Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Psychopharmacol ; 37(6): 601-609, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37125702

RESUMEN

BACKGROUND: The dopamine transporter (DAT) is the main regulator of dopamine concentration in the extrasynaptic space. The pharmacological inhibition of the DAT results in a wide spectrum of behavioral manifestations, which have been identified so far in a limited number of species, mostly in rodents. AIM: Here, we used another well-recognized model organism, the zebrafish (Danio rerio), to explore the behavioral effects of GBR 12909, a highly-affine selective DAT blocker. METHODS: We evaluated zebrafish locomotion, novelty-related exploration, spatial cognition, and social phenotypes in the novel tank, habituation and shoaling tests, following acute 20-min water immersion in GBR 12909. RESULTS: Our findings show hypolocomotion, anxiety-like state, and impaired spatial cognition in fish acutely treated with GBR 12909. This behavioral profile generally parallels that of the DAT knockout rodents and zebrafish, and it overlaps with behavioral effects of other DAT-inhibiting drugs of abuse, such as cocaine and D-amphetamine. CONCLUSION: Collectively, our data support the utility of zebrafish in translational studies on DAT targeting neuropharmacology and strongly implicate DAT aberration as an important mechanisms involved in neurological and psychiatric diseases.


Asunto(s)
Cocaína , Pez Cebra , Animales , Dopamina , Inhibidores de Captación de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Cocaína/farmacología
2.
Biomedicines ; 11(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979953

RESUMEN

OBJECTIVE: To evaluate the rate of subclinical carotid atherosclerosis and clinical significance of immunoinflammatory markers in patients with rheumatoid arthritis (RA) at low cardiovascular risk. MATERIALS AND METHODS: The study included 275 RA patients and a control group of 100 participants without autoimmune diseases. All study participants were at low cardiovascular risk, calculated by the QRISK3 scale (<20%), and free of cardiovascular disease. Ultrasound examination of carotid arteries was performed to measure cIMT and to detect atherosclerotic plaques (ASP) in carotid arteries. sIСАМ-1, sVСАМ, and sCD40L levels were determined by enzyme immunoassay. RESULTS: Carotid ASP was observed more frequently in RA patients (27%) than in the control group (17%), p = 0.03. The frequency of ASP in RA patients did not depend on the disease's stage or activity. There was a significant correlation between cIMT and age, cardiovascular risk determined by QRISK3, level of total cholesterol, LDL, and blood pressure in RA patients, p < 0.05 in all cases. No correlation between cIMT and blood levels of sCD40L, sVCAM, and sICAM was found. In RA patients, a higher concentration of sVCAM was detected in the carotid ASP group compared to the non-atherosclerotic group. sCD40L was associated with cIMT and total cholesterol in the ASP group and with total cholesterol and blood pressure in non-atherosclerotic patients. CONCLUSIONS: Subclinical atherosclerotic lesions of the carotid arteries were observed significantly more frequently in RA patients with low cardiovascular risk than in the control group. The results of the study demonstrate the association between cIMT, traditional cardiovascular risk factors, and immunoinflammatory markers in RA patients.

3.
Front Mol Biosci ; 10: 1313426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161383

RESUMEN

Introduction: Systemic scleroderma (SSc) is a chronic autoimmune disease of inflammatory origin. Mitochondrial dysfunction is considered as an important mechanism in the pathogenesis of SSc. Currently mitochondrial DNA (mtDNA) copy number is used as a surrogate marker of mitochondrial dysfunction. Previous studies demonstrate that innate immune cells are important participants in inflammatory and fibrotic processes in SSc. The aim of the study was to evaluate the number of mtDNA copies in CD14+ monocytes and whole blood of patients with SSc in comparison with healthy individuals. Methods: Absolute mtDNA copy number was measured using digital PCR. It was found that the number of mtDNA copies in CD14+ monocytes was significantly higher in patients with SSc compared to control, while the number of mtDNA copies in the whole blood did not have significant differences. Results: The correlation analysis revealed an inverse association of mtDNA copy number with disease duration and the relationship between pro-inflammatory activation of CD14+ monocytes in terms of LPS-stimulated IL-6 secretion and mtDNA copy number. At the same time, basal and LPS-stimulated secretion of IL-6 by cultured CD+ monocytes were significantly higher in SSc group in comparison with control. Discussion: The study results suggest that increase of mtDNA copy number in CD14+ monocytes is a possible mechanism to maintain the reduced function of defective mitochondria in monocytes from patients with SSc associated with the development and progression of SSc.

4.
Front Biosci (Schol Ed) ; 15(4): 16, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38163957

RESUMEN

Systemic sclerosis (SSc) is a rare systemic autoimmune disease of unknown etiology, which is characterized by endothelial dysfunction, pathologic vasculopathy, and increased tissue fibrosis. Traditionally, SSc has been regarded as a prototypical fibrotic disease in the family of systemic autoimmune diseases. Traditionally, emphasis has been placed on the three components of the pathogenesis of SSc: vascular, immune, and mesenchymal. Microvascular lesions, including endothelial dysfunction and smooth muscle cell migration into the intima of vessels in SSc, resemble the atherosclerotic process. Although microvascular disease is a hallmark of SSc, understanding the role of atherosclerotic vascular lesions in patients with SSc remains limited. It is still unknown whether the increased cardiovascular risk in SSc is related to specific cardiac complications (such as myocardial fibrosis) or the accelerated development of atherosclerosis. Different immune cell types appear to be involved in the immunopathogenesis of SSc via the activation of other immune cells, fibrosis, or vascular damage. Macrophages, B cells, T cells, dendritic cells, neutrophils, and endothelial cells have been reported to play the most important role in the pathogenesis of SSc and atherosclerosis. In our article, we reviewed the most significant and recent studies on the pathogenetic links between the development of SSc and the atherosclerotic process.


Asunto(s)
Aterosclerosis , Esclerodermia Sistémica , Humanos , Células Endoteliales/patología , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/patología , Fibrosis , Aterosclerosis/etiología , Aterosclerosis/patología , Biomarcadores
5.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430455

RESUMEN

Channelopathies are a large group of systemic disorders whose pathogenesis is associated with dysfunctional ion channels. Aberrant transmembrane transport of K+, Na+, Ca2+ and Cl- by these channels in the brain induces central nervous system (CNS) channelopathies, most commonly including epilepsy, but also migraine, as well as various movement and psychiatric disorders. Animal models are a useful tool for studying pathogenesis of a wide range of brain disorders, including channelopathies. Complementing multiple well-established rodent models, the zebrafish (Danio rerio) has become a popular translational model organism for neurobiology, psychopharmacology and toxicology research, and for probing mechanisms underlying CNS pathogenesis. Here, we discuss current prospects and challenges of developing genetic, pharmacological and other experimental models of major CNS channelopathies based on zebrafish.


Asunto(s)
Canalopatías , Epilepsia , Animales , Pez Cebra/genética , Canalopatías/genética , Modelos Animales de Enfermedad , Encéfalo
6.
Biomedicines ; 10(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36359303

RESUMEN

Chromone-containing allylmorpholines (CCAMs) are a novel class of compounds that have demonstrated acetyl- and butyryl-cholinesterase-inhibiting and N-methyl-D-aspartate (NMDA) receptor-blocking properties in vitro, but their in vivo pharmacological activity remains underexplored. In this work, we evaluated the psychotropic activity of five different CCAMs (1 (9a), 2 (9j), 3 (9l), 4 (33a), and 5 (33b)) using the novel tank test (NTT) and light/dark box (LDB) test in adult zebrafish. The CCAMs were screened in the NTT at a range of concentrations, and they were found to induce a dose-dependent sedative effect. Compound 4 (33a) was also evaluated using the LDB test, and it was found to have anxiolytic-like properties at low concentrations. To assess the potential contribution of the glutamate and cholinergic mechanisms in the effects of the CCAMs, we conducted experiments with pre-exposure to putative antagonists, NMDA and biperiden. Neither biperiden nor NMDA were able to diminish or cancel the effects of the CCAMs, countering the in vitro data obtained in previous studies. The apparent discrepancy could be related to the specifics of CCAM metabolism or to the interspecies differences between the putative target proteins, possibly due to the relatively low identity percentage of their sequences. Although further research in mammals is required in order to establish their pharmacological properties, novel CCAMs may represent an appealing group of psychoactive drug candidates.

7.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955790

RESUMEN

In addition to identifying the major B- and T-cell subpopulations involved in autoimmune rheumatic diseases (ARDs), in recent years special attention has been paid to studying the expression of their activation markers and immune checkpoints (ICPs). The activation markers on B and T cells are a consequence of the immune response, and these molecules are considered as sensitive specific markers of ARD activity and as promising targets for immunotherapy. ICPs regulate the activation of the immune response by preventing the initiation of autoimmune processes, and they modulate it by reducing immune cell-induced organ and tissue damage. The article considers the possible correlation of ICPs with the activity of ARDs, the efficacy of specific ARD treatments, and the prospects for the use of activation molecules and activation/blocking ICPs for the treatment of ARDs.


Asunto(s)
Enfermedades Autoinmunes , Síndrome de Dificultad Respiratoria , Enfermedades Reumáticas , Humanos , Inmunoterapia , Linfocitos T
8.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562903

RESUMEN

One of the problems of modern medical science is cardiovascular pathology caused by atherosclerotic vascular lesions in patients with autoimmune rheumatic diseases (ARDs). The similarity between the mechanisms of the immunopathogenesis of ARD and chronic low-grade inflammation in atherosclerosis draws attention. According to modern concepts, chronic inflammation associated with uncontrolled activation of both innate and acquired immunity plays a fundamental role in all stages of ARDs and atherosclerotic processes. Macrophage monocytes play an important role among the numerous immune cells and mediators involved in the immunopathogenesis of both ARDs and atherosclerosis. An imbalance between M1-like and M2-like macrophages is considered one of the causes of ARDs. The study of a key pathogenetic factor in the development of autoimmune and atherosclerotic inflammation-activated monocyte/macrophages will deepen the knowledge of chronic inflammation pathogenesis.


Asunto(s)
Aterosclerosis , Enfermedades Autoinmunes , Placa Aterosclerótica , Síndrome de Dificultad Respiratoria , Enfermedades Reumáticas , Aterosclerosis/patología , Humanos , Inflamación/patología , Activación de Macrófagos , Macrófagos , Placa Aterosclerótica/patología , Enfermedades Reumáticas/patología
9.
Cells ; 11(9)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563838

RESUMEN

Progress in the development of technologies for the real-time monitoring of neurotransmitter dynamics has provided researchers with effective tools for the exploration of etiology and molecular mechanisms of neuropsychiatric disorders. One of these powerful tools is fast-scan cyclic voltammetry (FSCV), a technique which has progressively been used in animal models of diverse pathological conditions associated with alterations in dopamine transmission. Indeed, for several decades FSCV studies have provided substantial insights into our understanding of the role of abnormal dopaminergic transmission in pathogenetic mechanisms of drug and alcohol addiction, Parkinson's disease, schizophrenia, etc. Here we review the applications of FSCV to research neuropsychiatric disorders with particular attention to recent technological advances.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Animales , Modelos Animales , Neurotransmisores
10.
Curr Pharm Des ; 27(2): 276-292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33045961

RESUMEN

BACKGROUND: The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE: In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION: A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.


Asunto(s)
Aterosclerosis , ADN Mitocondrial , Aterosclerosis/genética , ADN Mitocondrial/genética , Humanos , Inflamación/genética , Mitocondrias/genética , Mutación
11.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872444

RESUMEN

Efficient diagnostic approaches to detect coronary artery disease (CAD) in elderly patients are necessary to ensure optimal and timely treatment. The population of suspected CAD patients older than 70 years is especially vulnerable and constantly growing. Finding the optimal diagnostic approach is challenging due to certain features of this population, such as high prevalence of comorbidities, existing contraindications to exercise tests or cognitive decline, which hinders correct assessment of the patient's situation. Moreover, some symptoms of CAD can have variable significance in the elderly compared to younger adult groups. In this review, we present current recommendations of the United States (US) and European cardiologists' associations and discuss their applicability for diagnostics in the elderly population. Exercise electrocardiogram (ECG) and exercise stress echocardiography (SE) tests are not feasible for a substantial proportion of elderly patients. Coronary computed tomography angiography (CTA) appears to be an attractive alternative for such patients, but is not universally applicable; for instance, it is problematic in patients with significant calcification of the vessels. Moreover, more studies are needed to compare the results delivered by CTA to those of other diagnostic methods. Future efforts should be focused on comparative studies to better understand the limits and advantages of different diagnostic methods and their combinations. It is possible that some of the currently used diagnostic criteria could be improved to better accommodate the needs of the elderly population.


Asunto(s)
Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico , Electrocardiografía/métodos , Prueba de Esfuerzo/métodos , Anciano , Anciano de 80 o más Años , Comorbilidad , Femenino , Humanos , Masculino , Guías de Práctica Clínica como Asunto , Estados Unidos
12.
Life (Basel) ; 10(9)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842589

RESUMEN

The search for markers of predisposition to atherosclerosis development is very important for early identification of individuals with a high risk of cardiovascular disease. The aim of the present study was to investigate the association of mitochondrial DNA mutations with carotid intima-media thickness and to determine the impact of mitochondrial heteroplasmy measurements in the prognosis of atherosclerosis development. This cross-sectional, population-based study was conducted in 468 subjects from the Novosibirsk region. It was shown that the mean (carotid intima-media thickness) cIMT correlated with the following mtDNA mutations: m.15059G>A (r = 0.159, p = 0.001), m.12315G>A (r = 0.119; p = 0.011), m.5178C>A (r = 0.114, p = 0.014), and m.3256C>T (r = 0.130, p = 0.011); a negative correlation with mtDNA mutations m.14846G>A (r = -0.111, p = 0.042) and m.13513G>A (r = -0.133, p = 0.004) was observed. In the linear regression analysis, the addition of the set of mtDNA mutations to the conventional cardiovascular risk factors increased the ability to predict the cIMT variability from 17 to 27%. Multi-step linear regression analysis revealed the most important predictors of mean cIMT variability: age, systolic blood pressure, blood levels of total cholesterol, LDL and triglycerides, as well as the mtDNA mutations m.13513G>A, m.15059G>A, m.12315G>A, and m.3256C>T. Thus, a high predictive value of mtDNA mutations for cIMT variability was demonstrated. The association of mutation m.13513G>A and m.14846G>A with a low value of cIMT, demonstrated in several studies, represents a potential for the development of anti-atherosclerotic gene therapy.

13.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751832

RESUMEN

Immunoglobulins are the potent effector proteins of the humoral immune response. In the course of evolution, immunoglobulins have formed extremely diverse types of molecular structures with antigen-recognizing, antigen-binding, and effector functions embedded in a single molecule. Polysaccharide moiety of immunoglobulins plays the essential role in immunoglobulin functioning. There is growing evidence that the carbohydrate composition of immunoglobulin-linked glycans, and especially their terminal sialic acid residues, provide a key effect on the effector functions of immunoglobulins. Possibly, sialylation of Fc glycan is a common mechanism of IgG anti-inflammatory action in vivo. Thus, the post-translational modification (glycosylation) of immunoglobulins opens up significant possibilities in the diagnosis of both immunological and inflammatory disorders and in their therapies. This review is focused on the analysis of glycosylation of immunoglobulins, which can be a promising addition to improve existing strategies for the diagnosis and treatment of various immuno-inflammatory diseases.


Asunto(s)
Enfermedades del Sistema Inmune/tratamiento farmacológico , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G , Inflamación/tratamiento farmacológico , Ácido N-Acetilneuramínico/química , Polisacáridos/química , Animales , Glicosilación , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/uso terapéutico , Ratones , Procesamiento Proteico-Postraduccional
14.
Biomedicines ; 8(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664349

RESUMEN

Atherosclerosis is a serious disorder, with numerous potential complications such as cardiovascular disease, ischemic stroke, and myocardial infarction. The origin of atherosclerosis is related to chronic inflammation, lipid metabolism alterations, and oxidative stress. Inflammasomes are the cytoplasmic multiprotein complex triggering the activation of inflammatory response. NLRP3 inflammasomes have a specific activation pathway that involves numerous stimuli, including a wide range of PAMPs and DAMPs. Recent studies of atherosclerotic pathology are focused on the mitochondria that appear to be a promising target for therapeutic approach development. Mitochondria are the main source of reactive oxygen species (ROS) associated with oxidative stress. It was previously shown that NLRP3 inflammasome activation results in mitochondrial damage, but the exact mechanisms of this need to be specified. In this review, we focused on the features of NLRP3 inflammasomes and their significance for atherosclerosis, especially concerning mitochondria.

15.
Biomedicines ; 8(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570831

RESUMEN

Atherosclerosis is a multifactorial disease of the cardiovascular system associated with aging, inflammation, and oxidative stress. An important role in the development of atherosclerosis play elevated plasma lipoproteins. A number of external factors (smoking, diabetes, infections) can also contribute to the development of the disease. For a long time, atherosclerosis remains asymptomatic, therefore, the search for early markers of the disease is critical for the timely management and better outcomes for patients. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage appear to connect different aspects of atherosclerosis pathogenesis. To date, multiple lines of research have demonstrated the strong association of mitochondrial dysfunction with the development of various human diseases. Therapies aimed at restoring the mitochondrial function are being actively developed, and are expected to broaden the therapeutic possibilities for several chronic human diseases. The development of such therapies depends on our understanding of the functional roles of different mtDNA variants associated with one or another disorder, and the molecular mechanisms linking mitochondrial dysfunction with a given pathological feature. These questions are, however, challenging and require future intensive research. This review summarizes the recent studies and describes the central processes of the development of atherosclerosis, and shows their relationship with mitochondrial dysfunction. One of the promising therapeutic approaches for future atherosclerosis treatments is the use of mitochondria-targeted antioxidants. Future studies should focus on characterizing the mechanisms of mitochondrial involvement in cardiovascular pathologies to better direct the search for novel therapies.

16.
Biology (Basel) ; 9(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331341

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a multifactorial disease, in which systemic inflammation plays a key role. This 6-month randomized double-blinded placebo-controlled study evaluates the possible effect of natural preparation Inflaminat on clinical symptoms of COPD, indicators of respiratory function, and exacerbation frequency in 60 patients with moderate severity of COPD. Inflaminat is a combination of natural ingredients black elder (Sambucus nigra L.) berries, violet (Viola tricolor L.) herb, and calendula (Calendula officinalis L.) flowers. The preparation has been previously demonstrated to possess anticytokine and anti-inflammatory effects in experimental studies. In present study, COPD dynamics were evaluated by means of BCSS (Breathlessness, Cough, and Sputum Scale) and spirometry tests. It was shown that 6-months Inflaminat administration led to significant decrease of BCSS points from 3.0 ± 0.6 to 1.9 ± 0.7, (p = 0.002) as well as significant increase of FEV1 from 66 ± 18% to 73 ± 17%, (p = 0.042); there were no beneficial dynamics in placebo group. Side effects associated with preparation administration were not identified. The results of the study suggest that Inflaminat may be employed in treatment of patients with moderate severity of COPD, since it has a positive effect on COPD symptoms according BCSS and indicators of respiratory function FEV1.

17.
Front Pharmacol ; 11: 613780, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510639

RESUMEN

Cardiovascular pathologies maintain the leading position in mortality worldwide. Atherosclerosis is a chronic disease that can result in a variety of serious complications, such as myocardial infarction, stroke, and cardiovascular disease. Inflammation and lipid metabolism alterations play a crucial role in atherogenesis, but the details of relationships and causality of these fundamental processes remain not clear. The oxidation of LDL was considered the main atherogenic modification of LDL within the vascular wall for decades. However, recent investigations provided a growing body of evidence in support of the multiple LDL modification theory. It suggests that LDL particles undergo numerous modifications that change their size, density, and chemical properties within the blood flow and vascular wall. Oxidation is the last stage in this cascade resulting in the atherogenic properties. Moreover, recent investigations have discovered that oxLDL may have both anti-inflammatory and pro-inflammatory properties. Oxidized LDL can trigger inflammation through the activation of macrophages and other cells. After all, oxidized LDL is still a promising object for further investigations that have the potential to clarify the unknown parts of the atherogenic process. In this review, we discuss the role of oxLDL in atherosclerosis development on different levels.

18.
Pain ; 160(12): 2798-2810, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31365467

RESUMEN

Homocysteinemia is a metabolic condition characterized by abnormally high level of homocysteine in the blood and is considered to be a risk factor for peripheral neuropathy. However, the cellular mechanisms underlying toxic effects of homocysteine on the processing of peripheral nociception have not yet been investigated comprehensively. Here, using a rodent model of experimental homocysteinemia, we report the causal association between homocysteine and the development of mechanical allodynia. Homocysteinemia-induced mechanical allodynia was reversed on pharmacological inhibition of T-type calcium channels. In addition, our in vitro studies indicate that homocysteine enhances recombinant T-type calcium currents by promoting the recycling of Cav3.2 channels back to the plasma membrane through a protein kinase C-dependent signaling pathway that requires the direct phosphorylation of Cav3.2 at specific loci. Altogether, these results reveal an unrecognized signaling pathway that modulates the expression of T-type calcium channels, and may potentially contribute to the development of peripheral neuropathy associated with homocysteinemia.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Calcio/metabolismo , Hiperalgesia/metabolismo , Hiperhomocisteinemia/complicaciones , Enfermedades del Sistema Nervioso Periférico/metabolismo , Animales , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Homocisteína/sangre , Hiperalgesia/etiología , Nocicepción/fisiología , Enfermedades del Sistema Nervioso Periférico/etiología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA