Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(14): e23828, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037419

RESUMEN

Unresolved inflammation, due to unfavorable imbalances between pro-inflammatory and pro-resolving mediators, leads to chronic inflammatory pathologies that are often sex-biased and regulated by sex hormones, including inflammatory bowel disease. Lipid mediators (LM) produced from polyunsaturated fatty acids by various lipoxygenases (LOX) and cyclooxygenases govern all stages of inflammation, i.e., the initiation and progression by pro-inflammatory eicosanoids and its resolution by specialized pro-resolving mediators (SPM). Here, we reveal sex-specific differences in murine experimental colitis with male preponderance, which was abolished by sex hormone deprivation using gonadectomy, and this correlated to the levels of inflammation-relevant mediators in the colon. Oral dextran sodium sulfate administration caused more severe colon inflammation in male CD-1 mice than in female counterparts during the acute phase. Colitis in males yielded higher colonic cytokine/chemokine levels but lower 12-/15-LOX-derived LM including SPM compared to female animals in the resolving phase. Sex hormone deprivation in male mice by orchidectomy ameliorated colitis and impaired pro-inflammatory cytokine/chemokine levels but elevated 12-/15-LOX products including SPM, thus abolishing the observed sex differences. Conversely, ovariectomy impaired the levels of those LM that dominated in females and that were increased in males after gonadectomy. Our findings suggest that male sex hormones promote the development of colitis connected to the biosynthesis of inflammatory cytokines, chemokines, and certain LM, especially pro-resolving 12-/15-LOX products that appear to be suppressed in the male colon due to androgens.


Asunto(s)
Colitis , Hormonas Esteroides Gonadales , Animales , Masculino , Ratones , Femenino , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Hormonas Esteroides Gonadales/metabolismo , Inflamación/metabolismo , Sulfato de Dextran/toxicidad , Caracteres Sexuales , Colon/metabolismo , Colon/patología , Orquiectomía , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo
2.
J Multidiscip Healthc ; 17: 923-936, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449841

RESUMEN

Purpose: Computerized physician order entry (CPOE) and clinical decision support systems (CDSS) are used internationally since the 1980s. These systems reduce costs, enhance drug therapy safety, and improve quality of care. A few years ago, there was a growing effort to digitize the healthcare sector in Germany. Implementing such systems like CPOE-CDSS requires training for effective adoption and, more important, acceptance by the users. Potential improvements for the software and implementation process can be derived from the users' perspective. The implementation process is globally relevant and applicable across professions due to the constant advancement of digitalization. The study assessed the implementation of medication software and overall satisfaction. Methods: In an anonymous voluntary online survey, physicians and nursing staff were asked about their satisfaction with the new CPOE-CDSS. The survey comprised single-choice queries on a Likert scale, categorizing into general information, digital medication administration, drug safety, and software introduction. In addition multiple-choice questions are mentioned. Data analysis was performed using Microsoft Office Excel 2016 and GraphPad PRISM 9.5.0. Results: Nurses and physicians' satisfaction with the new software increased with usage hours. The software's performance and loading times have clearly had a negative impact, which leads to a low satisfaction of only 20% among physicians and 17% among nurses. 53% of nurses find the program's training period unsuitable for their daily use, while 57% of physicians approve the training's scope for their professional group. Both professions agree that drug-related problems are easier to detect using CPOE-CDSS, with 76% of nurses and 75% of physicians agreeing. The study provides unbiased feedback on software implementation. Conclusion: In conclusion, digitizing healthcare requires managing change, effective training, and addressing software functionality concerns to ensure improved medication safety and streamlined processes. Interfaces, performance optimization, and training remain crucial for software acceptance and effectiveness.

3.
J Multidiscip Healthc ; 17: 1137-1145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500480

RESUMEN

Purpose: The shortage of nursing staff as well as the slow progress in the German health care system's digitalisation has gained much attention due to COVID-19. Patient-specific medication management using the unit-dose dispensing system (UDDS) has the potential for a lasting and positive influence on both digitalisation and the relief of nursing staff. Methods: Nursing staff UDDS-acceptance was determined via a validated online survey. For the evaluation of stock keeping on the wards, the delivery quantities were determined for a comparative period before and after the introduction of the UDDS. The time required for on-ward medication-related processes on ward before and after the introduction of UDDS was recorded based on a survey form and the nursing relief in full-time equivalent (FTE) was calculated using the data obtained. Results: We show that nurses appreciate the UDDS and confirm a significant reduction in drug stocks on the wards. The UDDS reduces the time needed to dispense medications from 4.52 ± 0.35 min to 1.67 ± 0.15 min/day/patient. In relation to the entire medication process, this corresponds to a reduction of 50% per day and per patient. Based on 40,000 patients/year and a supply of 1,125 beds with unit-dose blisters, 7.36 FTE nursing staff can be relieved per year. In contrast, 6.5 FTE in the hospital pharmacy are required for supplying the hospitals. Conclusion: UDDS is well accepted by nurses, reduces stock levels on ward, and fulfils criteria as a nursing-relief measure.

5.
Mol Metab ; 76: 101791, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586657

RESUMEN

OBJECTIVES: Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids and precursors of oxygenated lipid mediators with diverse functions, including the control of cell growth, inflammation and tumourigenesis. However, the molecular pathways that control the availability of PUFAs for lipid mediator production are not well understood. Here, we investigated the crosstalk of three pathways in the provision of PUFAs for lipid mediator production: (i) secreted group X phospholipase A2 (GX sPLA2) and (ii) cytosolic group IVA PLA2 (cPLA2α), both mobilizing PUFAs from membrane phospholipids, and (iii) adipose triglyceride lipase (ATGL), which mediates the degradation of triacylglycerols (TAGs) stored in cytosolic lipid droplets (LDs). METHODS: We combined lipidomic and functional analyses in cancer cell line models to dissect the trafficking of PUFAs between membrane phospholipids and LDs and determine the role of these pathways in lipid mediator production, cancer cell proliferation and tumour growth in vivo. RESULTS: We demonstrate that lipid mediator production strongly depends on TAG turnover. GX sPLA2 directs ω-3 and ω-6 PUFAs from membrane phospholipids into TAG stores, whereas ATGL is required for their entry into lipid mediator biosynthetic pathways. ATGL controls the release of PUFAs from LD stores and their conversion into cyclooxygenase- and lipoxygenase-derived lipid mediators under conditions of nutrient sufficiency and during serum starvation. In starving cells, ATGL also promotes the incorporation of LD-derived PUFAs into phospholipids, representing substrates for cPLA2α. Furthermore, we demonstrate that the built-up of TAG stores by acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is required for the production of mitogenic lipid signals that promote cancer cell proliferation and tumour growth. CONCLUSION: This study shifts the paradigm of PLA2-driven lipid mediator signalling and identifies LDs as central lipid mediator production hubs. Targeting DGAT1-mediated LD biogenesis is a promising strategy to restrict lipid mediator production and tumour growth.


Asunto(s)
Gotas Lipídicas , Neoplasias , Humanos , Gotas Lipídicas/metabolismo , Fosfolipasas A2 Grupo X/metabolismo , Lipasa/metabolismo , Ácidos Grasos Insaturados/metabolismo , Fosfolípidos/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Neoplasias/metabolismo , Proliferación Celular
6.
Proc Natl Acad Sci U S A ; 120(35): e2302070120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603745

RESUMEN

Glucocorticoids (GC) are potent anti-inflammatory agents, broadly used to treat acute and chronic inflammatory diseases, e.g., critically ill COVID-19 patients or patients with chronic inflammatory bowel diseases. GC not only limit inflammation but also promote its resolution although the underlying mechanisms are obscure. Here, we reveal reciprocal regulation of 15-lipoxygenase (LOX) isoform expression in human monocyte/macrophage lineages by GC with respective consequences for the biosynthesis of specialized proresolving mediators (SPM) and their 15-LOX-derived monohydroxylated precursors (mono-15-OH). Dexamethasone robustly up-regulated pre-mRNA, mRNA, and protein levels of ALOX15B/15-LOX-2 in blood monocyte-derived macrophage (MDM) phenotypes, causing elevated SPM and mono-15-OH production in inflammatory cell types. In sharp contrast, dexamethasone blocked ALOX15/15-LOX-1 expression and impaired SPM formation in proresolving M2-MDM. These dexamethasone actions were mimicked by prednisolone and hydrocortisone but not by progesterone, and they were counteracted by the GC receptor (GR) antagonist RU486. Chromatin immunoprecipitation (ChIP) assays revealed robust GR recruitment to a putative enhancer region within intron 3 of the ALOX15B gene but not to the transcription start site. Knockdown of 15-LOX-2 in M1-MDM abolished GC-induced SPM formation and mono-15-OH production. Finally, ALOX15B/15-LOX-2 upregulation was evident in human monocytes from patients with GC-treated COVID-19 or patients with IBD. Our findings may explain the proresolving GC actions and offer opportunities for optimizing GC pharmacotherapy and proresolving mediator production.


Asunto(s)
COVID-19 , Glucocorticoides , Humanos , Glucocorticoides/farmacología , Araquidonato 15-Lipooxigenasa/genética , Inflamación , Dexametasona/farmacología , Lípidos
7.
Adv Sci (Weinh) ; 10(6): e2205604, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36567268

RESUMEN

Specialized pro-resolving mediators (SPM), primarily produced in innate immune cells, exert crucial bioactions for resolving inflammation. Among various lipoxygenases (LOX), 15-LOX-1 is key for SPM biosynthesis, but cellular activation principles of 15-LOX-1 are unexplored. It was shown that 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) shifts 5-LOX regiospecificity from 5- to 12-lipoxygenation products. Here, it is demonstrated that AKBA additionally activates cellular 15-LOX-1 via an allosteric site accomplishing robust SPM formation in innate immune cells, particularly in M2 macrophages. Compared to ionophore, AKBA-induced LOX activation is Ca2+ - and phosphorylation-independent, with modest induction of 5-LOX products. AKBA docks into a groove between the catalytic and regulatory domains of 15-LOX-1 interacting with R98; replacement of R98 by alanine abolishes AKBA-induced 15-LOX product formation in HEK293 cells. In zymosan-induced murine peritonitis, AKBA strikingly elevates SPM levels and promotes inflammation resolution. Together, targeted allosteric modulation of LOX activities governs SPM formation and offers new concepts for inflammation resolution pharmacotherapy.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Lipooxigenasa , Humanos , Ratones , Animales , Regulación Alostérica , Células HEK293 , Inflamación/tratamiento farmacológico , Lípidos , Receptores Depuradores de Clase E
8.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35455433

RESUMEN

Plectranthus zeylanicus Benth is used in Sri Lankan folk medicine as a remedy for inflammatory conditions and microbial infections. Our previous investigations revealed potent 5-lipoxygenase (5-LO) inhibitory activity in lipophilic extracts of this plant, supporting its anti-inflammatory potential. In-depth studies on the antimicrobial activity have not been conducted and the bioactive ingredients remained elusive. As a continuation of our previous work, the present investigation was undertaken to evaluate the antimicrobial activity of different extracts of P. zeylanicus and to isolate and characterize bioactive secondary metabolites. Different organic extracts of this plant were analyzed for their antibacterial activity, and the most active extract, i.e., dichloromethane extract, was subjected to bioactivity-guided fractionation, which led to the isolation of 7α-acetoxy-6ß-hydroxyroyleanone. This compound displayed strong antibacterial activity against methicillin-resistant Staphylococcus aureus with a minimum inhibitory concentration of 62.5 µg/mL, and its disinfectant capacity was comparable to the potency of a commercial disinfectant. Moreover, 7α-acetoxy-6ß-hydroxyroyleanone inhibits 5-LO with IC50 values of 1.3 and 5.1 µg/mL in cell-free and cell-based assays, respectively. These findings rationalize the ethnopharmacological use of P. zeylanicus as antimicrobial and anti-inflammatory remedy.

9.
Immunology ; 166(1): 47-67, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35143048

RESUMEN

Staphylococcus aureus causes severe infections associated with inflammation, such as sepsis or osteomyelitis. Inflammatory processes are regulated by distinct lipid mediators (LMs) but how their biosynthetic pathways are orchestrated in S. aureus infections is elusive. We show that S. aureus strikingly not only modulates pro-inflammatory, but also inflammation-resolving LM pathways in murine osteomyelitis and osteoclasts as well as in human monocyte-derived macrophages (MDMs) with different phenotype. Targeted LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed massive generation of LM with distinct LM signature profiles in acute and chronic phases of S. aureus-induced murine osteomyelitis in vivo. In human MDM, S. aureus elevated cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2  synthase-1 (mPGES-1), but impaired the levels of 15-lipoxygenase-1 (15-LOX-1), with respective changes in LM signature profiles initiated by these enzymes, that is, elevated PGE2 and impaired specialized pro-resolving mediators, along with reduced M2-like phenotypic macrophage markers. The cell wall component, lipoteichoic acid (LTA), mimicked the impact of S. aureus elevating COX-2/mPGES-1 expression via NF-κB and p38 MAPK signalling in MDM, while the impairment of 15-LOX-1 correlates with reduced expression of Lamtor1. In conclusion, S. aureus dictates LM pathways via LTA resulting in a shift from anti-inflammatory M2-like towards pro-inflammatory M1-like LM signature profiles.


Asunto(s)
Osteomielitis , Staphylococcus aureus , Animales , Ciclooxigenasa 2/metabolismo , Dinoprostona , Inflamación/metabolismo , Lipopolisacáridos , Ratones , Prostaglandina-E Sintasas/metabolismo , Receptores Depuradores de Clase E , Ácidos Teicoicos
10.
Arthritis Res Ther ; 23(1): 222, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429153

RESUMEN

BACKGROUND: The incidence of rheumatoid arthritis is correlated with age. In this study, we analyzed the association of the incidence and severity of glucose-6-phosphate isomerase (G6PI)-induced arthritis with age in two different mouse strains. METHODS: Young and very old mice from two different arthritis-susceptible wild-type mouse strains were analyzed after a single subcutaneous injection of G6PI s.c. The metabolism and the function of synoviocytes were analyzed in vitro, the production of bioactive lipid mediators by myeloid cells and synoviocytes was assessed in vitro and ex vivo by UPLC-MS-MS, and flow cytometry was used to verify age-related changes of immune cell composition and function. RESULTS: While the severity of arthritis was independent from age, the onset was delayed in old mice. Old mice showed common signs of immune aging like thymic atrophy associated with decreased CD4+ effector T cell numbers. Despite its decrease, the effector T helper (Th) cell compartment in old mice was reactive and functionally intact, and their Tregs exhibited unaltered suppressive capacities. In homeostasis, macrophages and synoviocytes from old mice produced higher amounts of pro-inflammatory cyclooxygenase (COX)-derived products. However, this functional difference did not remain upon challenge in vitro nor upon arthritis reactions ex vivo. CONCLUSION: While old mice show a higher baseline of inflammatory functions, this does not result in increased reaction towards self-antigens in arthritis-susceptible mouse strains. Together, our data from two different mouse strains show that the susceptibility for G6PI-induced arthritis is not age-dependent.


Asunto(s)
Artritis Experimental , Glucosa-6-Fosfato Isomerasa , Envejecimiento , Animales , Artritis Experimental/genética , Cromatografía Liquida , Glucosa-6-Fosfato Isomerasa/genética , Inmunización , Incidencia , Ratones , Espectrometría de Masas en Tándem
11.
Nanomaterials (Basel) ; 11(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34443772

RESUMEN

Inflammation is a hallmark of tissue remodeling during wound healing. The inflammatory response to wounds is tightly controlled and well-coordinated; dysregulation compromises wound healing and causes persistent inflammation. Topical application of natural anti-inflammatory products may improve wound healing, in particular under chronic pathological conditions. The long-chain metabolites of vitamin E (LCM) are bioactive molecules that mediate cellular effects via oxidative stress signaling as well as anti-inflammatory pathways. However, the effect of LCM on wound healing has not been investigated. We administered the α-tocopherol-derived LCMs α-13'-hydroxychromanol (α-13'-OH) and α-13'-carboxychromanol (α-13'-COOH) as well as the natural product garcinoic acid, a δ-tocotrienol derivative, in different pharmaceutical formulations directly to wounds using a splinted wound mouse model to investigate their effects on the wounds' proinflammatory microenvironment and wound healing. Garcinoic acid and, in particular, α-13'-COOH accelerated wound healing and quality of the newly formed tissue. We next loaded bacterial nanocellulose (BNC), a valuable nanomaterial used as a wound dressing with high potential for drug delivery, with α-13'-COOH. The controlled release of α-13'-COOH using BNC promoted wound healing and wound closure, mainly when a diabetic condition was induced before the injury. This study highlights the potential of α-13'-COOH combined with BNC as a potential active wound dressing for the advanced therapy of skin injuries.

12.
J Med Chem ; 64(15): 11496-11526, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34279935

RESUMEN

Endogenous long-chain metabolites of vitamin E (LCMs) mediate immune functions by targeting 5-lipoxygenase (5-LOX) and increasing the systemic concentrations of resolvin E3, a specialized proresolving lipid mediator. SAR studies on semisynthesized analogues highlight α-amplexichromanol (27a), which allosterically inhibits 5-LOX, being considerably more potent than endogenous LCMs in human primary immune cells and blood. Other enzymes within lipid mediator biosynthesis were not substantially inhibited, except for microsomal prostaglandin E2 synthase-1. Compound 27a is metabolized by sulfation and ß-oxidation in human liver-on-chips and exhibits superior metabolic stability in mice over LCMs. Pharmacokinetic studies show distribution of 27a from plasma to the inflamed peritoneal cavity and lung. In parallel, 5-LOX-derived leukotriene levels decrease, and the inflammatory reaction is suppressed in reconstructed human epidermis, murine peritonitis, and experimental asthma in mice. Our study highlights 27a as an orally active, LCM-inspired drug candidate that limits inflammation with superior potency and metabolic stability to the endogenous lead.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Descubrimiento de Drogas , Inflamación/tratamiento farmacológico , Inhibidores de la Lipooxigenasa/farmacología , Vitamina E/farmacología , Administración Oral , Araquidonato 5-Lipooxigenasa/genética , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/metabolismo , Inhibidores de la Lipooxigenasa/administración & dosificación , Inhibidores de la Lipooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Vitamina E/administración & dosificación , Vitamina E/metabolismo
13.
Pharmacol Res ; 167: 105556, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812006

RESUMEN

The pentacyclic triterpenoid quinone methide celastrol (CS) from Tripterygium wilfordii Hook. F. effectively ameliorates inflammation with potential as therapeutics for inflammatory diseases. However, the molecular mechanisms underlying the anti-inflammatory and inflammation-resolving features of CS are incompletely understood. Here we demonstrate that CS potently inhibits the activity of human 5-lipoxygenase (5-LOX), the key enzyme in pro-inflammatory leukotriene (LT) formation, in cell-free assays with IC50 = 0.19-0.49 µM. Employing metabololipidomics using ultra-performance liquid chromatography coupled to tandem mass spectrometry in activated human polymorphonuclear leukocytes or M1 macrophages we found that CS (1 µM) potently suppresses 5-LOX-derived products without impairing the formation of lipid mediators (LM) formed by 12-/15-LOXs as well as fatty acid substrate release. Intriguingly, CS induced the generation of 12-/15-LOX-derived LM including the specialized pro-resolving mediator (SPM) resolvin D5 in human M2 macrophages. Finally, intraperitoneal pre-treatment of mice with 10 mg/kg CS strongly impaired zymosan-induced LT formation and simultaneously elevated the levels of SPM and related 12-/15-LOX-derived LM in peritoneal exudates, spleen and plasma in vivo. Conclusively, CS promotes a switch from LT biosynthesis to formation of SPM which may underlie the anti-inflammatory and inflammation-resolving effects of CS, representing an interesting pharmacological strategy for intervention with inflammatory disorders.


Asunto(s)
Antiinflamatorios/farmacología , Leucotrienos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Inhibidores de la Lipooxigenasa/farmacología , Triterpenos Pentacíclicos/farmacología , Animales , Antiinflamatorios/química , Araquidonato 5-Lipooxigenasa/metabolismo , Vías Biosintéticas/efectos de los fármacos , Células Cultivadas , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inhibidores de la Lipooxigenasa/química , Masculino , Ratones , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos/química , Tripterygium/química
14.
Nanomaterials (Basel) ; 10(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327519

RESUMEN

Natural products suited for prophylaxis and therapy of inflammatory diseases have gained increasing importance. These compounds could be beneficially integrated into bacterial cellulose (BC), which is a natural hydropolymer applicable as a wound dressing and drug delivery system alike. This study presents experimental outcomes for a natural anti-inflammatory product concept of boswellic acids from frankincense formulated in BC. Using esterification respectively (resp.) oxidation and subsequent coupling with phenylalanine and tryptophan, post-modification of BC was tested to facilitate lipophilic active pharmaceutical ingredient (API) incorporation. Diclofenac sodium and indomethacin were used as anti-inflammatory model drugs before the findings were transferred to boswellic acids. By acetylation of BC fibers, the loading efficiency for the more lipophilic API indomethacin and the release was increased by up to 65.6% and 25%, respectively, while no significant differences in loading could be found for the API diclofenac sodium. Post-modifications could be made while preserving biocompatibility, essential wound dressing properties and anti-inflammatory efficacy. Eventually, in vitro wound closure experiments and evaluations of the effect of secondary dressings completed the study.

15.
Cell Rep ; 33(2): 108247, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053344

RESUMEN

Underlying mechanisms of how infectious inflammation is resolved by the host are incompletely understood. One hallmark of inflammation resolution is the activation of specialized pro-resolving mediators (SPMs) that enhance bacterial clearance and promote tissue repair. Here, we reveal α-hemolysin (Hla) from Staphylococcus aureus as a potent elicitor of SPM biosynthesis in human M2-like macrophages and in the mouse peritoneum through selective activation of host 15-lipoxygenase-1 (15-LOX-1). S. aureus-induced SPM formation in M2 is abolished upon Hla depletion or 15-LOX-1 knockdown. Isolated Hla elicits SPM formation in M2 that is reverted by inhibition of the Hla receptor ADAM10. Lipid mediators derived from Hla-treated M2 accelerate planarian tissue regeneration. Hla but not zymosan provokes substantial SPM formation in the mouse peritoneum, devoid of leukocyte infiltration and pro-inflammatory cytokine secretion. Besides harming the host, Hla may also exert beneficial functions by stimulating SPM production to promote the resolution of infectious inflammation.


Asunto(s)
Toxinas Bacterianas/farmacología , Proteínas Hemolisinas/farmacología , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Proteína ADAM10/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Endotoxinas/metabolismo , Activación Enzimática/efectos de los fármacos , Eliminación de Gen , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Planarias/efectos de los fármacos , Planarias/fisiología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Regeneración/efectos de los fármacos
16.
Nat Chem Biol ; 16(7): 783-790, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393899

RESUMEN

Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX.


Asunto(s)
Araquidonato 5-Lipooxigenasa/química , Productos Biológicos/química , Inhibidores de la Lipooxigenasa/química , Masoprocol/química , Triterpenos/química , Sitio Alostérico , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Productos Biológicos/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Leucotrieno B4/química , Leucotrieno B4/metabolismo , Inhibidores de la Lipooxigenasa/metabolismo , Masoprocol/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Triterpenos/metabolismo
17.
Molecules ; 25(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326068

RESUMEN

Traditional folk medicine in Sri Lanka is mostly based on plants and plant-derived products, however, many of these medicinal plant species are scientifically unexplored. Here, we evaluated the anti-inflammatory and antimicrobial potency of 28 different extracts prepared from seven popular medicinal plant species employed in Sri Lanka. The extracts were subjected to cell-based and cell-free assays of 5-lipoxygenase (5-LO), microsomal prostaglandin E2 synthase (mPGES)-1, and nitric oxide (NO) scavenging activity. Moreover, antibacterial and disinfectant activities were assessed. Characterization of secondary metabolites was achieved by gas chromatography coupled to mass spectrometric (GC-MS) analysis. n-Hexane- and dichloromethane-based extracts of Garcinia cambogia efficiently suppressed 5-LO activity in human neutrophils (IC50 = 0.92 and 1.39 µg/mL), and potently inhibited isolated human 5-LO (IC50 = 0.15 and 0.16 µg/mL) and mPGES-1 (IC50 = 0.29 and 0.49 µg/mL). Lipophilic extracts of Pothos scandens displayed potent inhibition of mPGES-1 only. A methanolic extract of Ophiorrhiza mungos caused significant NO scavenging activity. The lipophilic extracts of G. cambogia exhibited prominent antibacterial and disinfectant activities, and GC-MS analysis revealed the presence of fatty acids, sesquiterpenes and other types of secondary metabolites. Together, our results suggest the prospective utilization of G. cambogia as disinfective agent with potent anti-inflammatory properties.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Humanos , Concentración 50 Inhibidora , Medicina Tradicional , Óxido Nítrico/metabolismo , Fitoquímicos/química , Fitoquímicos/farmacología , Prostaglandina-E Sintasas/metabolismo , Sri Lanka
18.
ACS Med Chem Lett ; 11(3): 298-302, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32184960

RESUMEN

Multitarget anti-inflammatory drugs interfering with the arachidonic acid cascade exhibit superior efficacy. In this study, a prototype dual inhibitor of soluble epoxide hydrolase (sEH) and LTA4 hydrolase (LTA4H) with submicromolar activity toward both targets has been designed and synthesized. Preliminary structure-activity relationship studies were performed to identify optimal substitution patterns. X-ray structure analysis of a promising dual inhibitor in complex with sEH, as well as molecular docking with LTA4H provided a rationale for further optimization. Hereby, scaffold extension was successfully applied to yield potent dual sEH/LTA4H inhibitors. The spectrum of pro- and anti-inflammatory lipid mediators was evaluated in M1 and M2 macrophages, stimulated with LPS, and incubated with the most promising compound 14. The effect of 14 on the inflammatory lipid mediator profile characterizes dual sEH/LTA4H inhibitors as an interesting option for future anti-inflammatory agent investigations.

19.
Biochem Pharmacol ; 175: 113858, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32061774

RESUMEN

Monocytes are professional immune cells that produce abundant levels of pro-inflammatory eicosanoids including prostaglandins and leukotrienes during inflammation. Vacuolar (H+)-ATPase (V-ATPase) is critically involved in a variety of inflammatory processes including cytokine trafficking and lipid mediator biosynthesis. However, its role in eicosanoid biosynthetic pathways in monocytes remains elusive. Here, we present a differential role of V-ATPase in the expression and in the activity of cyclooxygenase (COX)-2 in human monocytes. Pharmacological targeting of V-ATPase increased the expression of COX-2 protein in lipopolysaccharide-stimulated primary monocytes, which was paralleled by enhanced phosphorylation of p38 MAPK and ERK-1/2, without impacting the NF-κB and SAPK/JNK pathways. Targeting of both p38 MAPK and ERK-1/2 pathways showed that the kinase pathways are crucial for COX-2 expression in human monocytes. Despite increased COX-2 protein levels, however, suppression of V-ATPase activity impaired the biosynthesis of COX- and also of 5-lipoxygenase (LOX)-derived lipid mediators in monocytes without affecting 12-/15-LOX products, assessed by a metabololipidomics approach using UPLC-MS-MS analysis. Our results indicate that changes in the intracellular pH may contribute to suppression of COX-2 and 5-LOX activities. We suggest that V-ATPase on one hand limits COX-2 protein levels via restricting p38 MAPK and ERK-1/2 activation, while on the other hand it governs the cellular activity of COX-2 through appropriate adjustment of the intracellular pH.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Leucocitos Mononucleares/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adolescente , Adulto , Anciano , Células Cultivadas , Ciclooxigenasa 2/genética , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Leucotrienos/biosíntesis , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Persona de Mediana Edad , Prostaglandinas/biosíntesis , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Adulto Joven
20.
Cell Mol Life Sci ; 77(21): 4365-4378, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31894359

RESUMEN

In tumors, cancer cells coexist and communicate with macrophages that can promote tumorigenesis via pro-inflammatory signals. Lipid mediators (LMs), produced mainly by cyclooxygenases (COXs) or lipoxygenases (LOs), display a variety of biological functions with advantageous or deleterious consequences for tumors. Here, we investigated how the communication between human monocyte-derived M2-like macrophages (MDM) and cancer cells affects LM biosynthesis using LM metabololipidomics. Coculture of human MDM with human A549 epithelial lung carcinoma cells, separated by a semipermeable membrane, increased LM formation by MDM upon subsequent activation. Strongest effects were observed on 5-LO-derived LM. While expression of the 5-LO pathway was not altered, p38 MAPK and the downstream MAPKAPK-2 that phosphorylates and stimulates 5-LO were more susceptible for activation in MDM upon precedent coculture with A549 cells as compared to monocultures. Accordingly, the p38 MAPK inhibitor Skepinone-L selectively prevented this increase in 5-LO product formation. Also, 5-LO-/15-LO-derived LM including lipoxin A4, resolvin D2 and D5 were elevated after coculture with A549 cells, correlating to increased 15-LO-1 protein levels. In contrast to cancer cells, coincubation with non-transformed human umbilical vein endothelial cells (HUVEC) did not affect LM production in MDM. Vice versa, MDM increased COX-2 protein expression and COX-mediated prostanoid formation in cancer cells. Conclusively, our data reveal that the communication between MDM and cancer cells can strikingly modulate the biosynthetic capacities to produce bioactive LM with potential relevance for tumor biology.


Asunto(s)
Comunicación Celular , Células Epiteliales/metabolismo , Metabolismo de los Lípidos , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Células A549 , Línea Celular , Células Epiteliales/patología , Células HT29 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lipidómica , Neoplasias Pulmonares/patología , Macrófagos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA