Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973505

RESUMEN

Substituted tetrahydrofuran derivatives were designed and synthesized to serve as the P2 ligand for a series of potent HIV-1 protease inhibitors. Both enantiomers of the tetrahydrofuran derivatives were synthesized stereoselectivity in optically active forms using lipase-PS catalyzed enzymatic resolution as the key step. These tetrahydrofuran derivatives are designed to promote hydrogen bonding and van der Waals interactions with the backbone atoms in the S2 subsite of the HIV-1 protease active site. Several inhibitors displayed very potent HIV-1 protease inhibitory activity. A high-resolution X-ray crystal structure of an inhibitor-bound HIV-1 protease provided important insight into the ligand binding site interactions in the active site.

2.
Eur J Med Chem ; 255: 115385, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37150084

RESUMEN

Structure-based design, synthesis, X-ray structural studies, and biological evaluation of a new series of potent HIV-1 protease inhibitors are described. These inhibitors contain various pyridyl-pyrimidine, aryl thiazole or alkylthiazole derivatives as the P2 ligands in combination with darunavir-like hydroxyethylamine sulfonamide isosteres. These heterocyclic ligands are inherent to kinase inhibitor drugs, such as nilotinib and imatinib. These ligands are designed to make hydrogen bonding interactions with the backbone atoms in the S2 subsite of HIV-1 protease. Various benzoic acid derivatives have been synthesized and incorporation of these ligands provided potent inhibitors that exhibited subnanomolar level protease inhibitory activity and low nanomolar level antiviral activity. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease were determined. These structures provided important ligand-binding site interactions for further optimization of this class of protease inhibitors.


Asunto(s)
Inhibidores de la Proteasa del VIH , VIH-1 , Inhibidores de la Proteasa del VIH/química , VIH-1/metabolismo , Mesilato de Imatinib/farmacología , Ligandos , Rayos X , Proteasa del VIH/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Relación Estructura-Actividad
3.
Bioorg Med Chem Lett ; 83: 129168, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738797

RESUMEN

We report here the synthesis and biological evaluation of darunavir derived HIV-1 protease inhibitors and their functional effect on enzyme inhibition and antiviral activity in MT-2 cell lines. The P2' 4-amino functionality was modified to make a number of amide derivatives to interact with residues in the S2' subsite of the HIV-1 protease active site. Several compounds exhibited picomolar enzyme inhibitory and low nanomolar antiviral activity. The X-ray crystal structure of the chloroacetate derivative bound to HIV-1 protease was determined. Interestingly, the active chloroacetate group converted to the acetate functionality during X-ray exposure. The structure revealed that the P2' carboxamide functionality makes enhanced hydrogen bonding interactions with the backbone atoms in the S2'-subsite.


Asunto(s)
Inhibidores de la Proteasa del VIH , VIH-1 , Darunavir/farmacología , Amidas/farmacología , Proteasa del VIH/metabolismo , Cloroacetatos/farmacología , Cristalografía por Rayos X , Diseño de Fármacos , Relación Estructura-Actividad
4.
ChemMedChem ; 17(9): e202200058, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170223

RESUMEN

The design, synthesis, X-ray structural, and biological evaluation of a series of highly potent HIV-1 protease inhibitors are reported herein. These inhibitors incorporate novel cyclohexane-fused tricyclic bis-tetrahydrofuran as P2 ligands in combination with a variety of P1 and P2' ligands. The inhibitor with a difluoromethylphenyl P1 ligand and a cyclopropylaminobenzothiazole P2' ligand exhibited the most potent antiviral activity. Also, it maintained potent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The corresponding inhibitor with an enantiomeric ligand was significantly less potent in these antiviral assays. The new P2 ligands were synthesized in optically active form using enzymatic desymmetrization of meso-diols as the key step. To obtain molecular insight, two high-resolution X-ray structures of inhibitor-bound HIV-1 protease were determined and structural analyses have been highlighted.


Asunto(s)
Inhibidores de la Proteasa del VIH , VIH-1 , Cristalografía por Rayos X , Diseño de Fármacos , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/química , VIH-1/metabolismo , Ligandos , Relación Estructura-Actividad , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA