Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 62(15): 2244-2251, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399091

RESUMEN

Tip links are seen under microscopes as double-helical tetrameric complexes of long nonclassical cadherins, cadherin-23 and protocadherin-15. The twisted filamentous structure enables tip links to regulate mechanotransduction in hearing and balance. While the molecular details of the double-helical protocadherin-15 cis dimers have been deciphered, a similar conformation of cadherin-23 is still elusive. In a search of cadherin-23 cis dimers, we performed photoinduced cross-linking of unmodified proteins in solution and on lipid membranes and observed no trace of cadherin-23 cis dimers. Reportedly, tip links are dynamic connections, assembling and disassembling in seconds. Using lipid vesicles, we measured significantly slower aggregations between cis dimers of tip link cadherins than via dimer-monomer interactions, indicating that the trans interactions between two cis dimers may possess steric restraints and defer reassociations. Reconnections of tip links are thus kinetically most desired between protocadherin-15 cis dimers and cadherin-23 monomers. Here we propose that the helical geometry of tip links is induced by protocadherin-15 cis dimers, while cadherin-23 remains single before tip linking.


Asunto(s)
Mecanotransducción Celular , Protocadherinas , Mecanotransducción Celular/fisiología , Células Ciliadas Auditivas/metabolismo , Lípidos , Cabello/metabolismo , Cadherinas/metabolismo
2.
Commun Biol ; 6(1): 293, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934176

RESUMEN

Cis and trans-interactions among cadherins secure multicellularity. While the molecular structure of trans-interactions of cadherins is well understood, work to identify the molecular cues that spread the cis-interactions two-dimensionally is still ongoing. Here, we report that transient, weak, yet multivalent, and spatially distributed hydrophobic interactions that are involved in liquid-liquid phase separations of biomolecules in solution, alone can drive the lateral-clustering of cadherin-23 on a membrane. No specific cis-dimer interactions are required for the lateral clustering. In cells, the cis-clustering accelerates cell-cell adhesion and, thus, contributes to cell-adhesion kinetics along with strengthening the junction. Although the physiological connection of cis-clustering with rapid adhesion is yet to be explored, we speculate that the over-expression of cadherin-23 in M2-macrophages may facilitate faster attachments to circulatory tumor cells during metastasis.


Asunto(s)
Cadherinas , Unión Proteica , Cadherinas/metabolismo , Adhesión Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA