Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genesis ; 62(4): e23614, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139086

RESUMEN

Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-ß) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-ß in the Mediterranean Sea urchin species, Paracentrotus lividus. TGF-ßRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in P. lividus. Continuous perturbation of TGF-ßRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-ßRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-ß targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-ß in biomineralization in these two phyla results from convergent evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Larva , Paracentrotus , Animales , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/genética , Paracentrotus/genética , Paracentrotus/metabolismo , Paracentrotus/embriología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Osteogénesis/genética , Redes Reguladoras de Genes , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Elife ; 122024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573316

RESUMEN

Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates' biomineralizing cells, yet, little is known on ROCK's role in invertebrates' biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.


Asunto(s)
Actomiosina , Factor A de Crecimiento Endotelial Vascular , Animales , Citoesqueleto de Actina , Erizos de Mar , Equinodermos , Eucariontes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA