Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 33(17): e17485, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39080979

RESUMEN

Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize towards one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. Diachasmimorpha longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural ecosystems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to manual virus injection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared with the permissive species, indicating that the host range of the viral symbiont may influence the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.


Asunto(s)
Especificidad del Huésped , Simbiosis , Tephritidae , Avispas , Animales , Avispas/virología , Avispas/genética , Simbiosis/genética , Especificidad del Huésped/genética , Tephritidae/virología , Tephritidae/parasitología , Tephritidae/genética , Ceratitis capitata/virología , Ceratitis capitata/genética , Ceratitis capitata/parasitología , Interacciones Huésped-Parásitos/genética , Control Biológico de Vectores
2.
Environ Entomol ; 41(1): 133-40, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22525068

RESUMEN

The black twig borer, Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae), is a pest of coffee and many endemic Hawaiian plants. Traps baited with chemical attractants commonly are used to capture ambrosia beetles for purposes of monitoring, studying population dynamics, predicting outbreaks, and mass trapping to reduce damage. The objectives of this research were to optimize trapping systems for X. compactus and other ambrosia beetles such as Xylosandrus crassiusculus (Motschulsky) and Xyleborinus saxesenii (Ratzeburg) by comparing efficacy of several attractants, repellents, and trap types. The ability of certain chemicals to act as beetle repellents and thus interfere with trap catch was tested for purposes of protecting host plants from attack. Potential attractants and application methods tested were as follows: ethyl alcohol pouch delivery system, ethyl alcohol vial delivery system, α-pinene in Eppendorf tubes, eugenol bubblecaps, ginger oil bubblecaps, manuka oil bubblecaps, phoebe oil bubblecaps, and an unbaited control. Potential repellents tested were limonene and verbenone. Ethyl alcohol vials were as attractive as ethyl alcohol sleeves, and were more effective than traps baited with eugenol and α-pinene. Japanese beetle traps were more effective for black twig borer trapping than Lindgren funnel traps, and were easier to deploy. Verbenone and limonene significantly reduced trap catch of Xylosandrus compactus and X. crassiusculus, suggesting that they may be effective for reducing attraction to host plants. These results show the importance of developing a combination of several monitoring techniques to enhance management procedures for the black twig borer.


Asunto(s)
Control de Insectos/métodos , Repelentes de Insectos/farmacología , Feromonas/farmacología , Gorgojos/efectos de los fármacos , Acacia , Animales , Coffea , Hawaii , Control de Insectos/instrumentación , Especificidad de la Especie , Gorgojos/fisiología
3.
J Chem Ecol ; 33(4): 817-23, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17318432

RESUMEN

Host location and colonization by bark beetles is dependent upon the relative and absolute amounts of attractant and antiattractant compounds available. Many investigations have lead to use of antiattractants for the management of these pests and have been especially focused on verbenone. However, recent studies have identified new antiattractants for several species of bark beetles. We report results of recent investigations of the response of western pine beetle, Dendroctonus brevicomis LeConte, to two recently identified antiattractants, acetophenone, and fenchyl alcohol, with verbenone as a standard of comparison, in northern California. Release of both acetophenone and verbenone resulted in significantly lower trap catches of D. brevicomis in aggregation pheromone-baited traps, while fenchyl alcohol was inactive. Acetophenone was the only antiattractant that did not reduce numbers of the most abundant predator of D. brevicomis, Temnochila chlorodia (Mannerheim), responding to the attractant pheromone of its prey. Aggregation pheromone-baited traps with acetophenone also had the highest predator/prey ratio. Our results suggest that acetophenone may be part of the intra- and interspecific interactions among sympatric species of bark beetles and may have application in their control.


Asunto(s)
Acetofenonas/metabolismo , Escarabajos/fisiología , Feromonas/metabolismo , Animales , Femenino , Masculino , Conducta Predatoria , Reproducibilidad de los Resultados
4.
J Chem Ecol ; 33(1): 131-46, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17160720

RESUMEN

Bark beetles (Coleoptera: Curculionidae, Scolytinae) have specialized feeding habits, and commonly colonize only one or a few closely related host genera in their geographical ranges. The red turpentine beetle, Dendroctonus valens LeConte, has a broad geographic distribution in North America and exploits volatile cues from a wide variety of pines in selecting hosts. Semiochemicals have been investigated for D. valens in North America and in its introduced range in China, yielding apparent regional differences in response to various host volatiles. Testing volatiles as attractants for D. valens in its native and introduced ranges provides an opportunity to determine whether geographic separation promotes local adaptation to host compounds and to explore potential behavioral divergence in native and introduced regions. Furthermore, understanding the chemical ecology of host selection facilitates development of semiochemicals for monitoring and controlling bark beetles, especially during the process of expansion into new geographic ranges. We investigated the responses of D. valens to various monoterpenes across a wide range of sites across North America and one site in China, and used the resulting information to develop an optimal lure for monitoring populations of D. valens throughout its Holarctic range. Semiochemicals were selected based on previous work with D. valens: (R)-(+)-alpha-pinene, (S)-(-)-alpha-pinene, (S)-(-)-beta-pinene, (S)-(+)-3-carene, a commercially available lure [1:1:1 ratio of (R)-(+)-alpha-pinene:(S)-(-)-beta-pinene:(S)-(+)-3-carene], and a blank control. At the release rates used, (+)-3-carene was the most attractive monoterpene tested throughout the native range in North America and introduced range in China, confirming results from Chinese studies. In addition to reporting a more effective lure for D. valens, we present a straightforward statistical procedure for analysis of insect trap count data yielding cells with zero counts, an outcome that is common but makes the estimation of the variance with a Generalized Linear Model unreliable because of the variability/mean count dependency.


Asunto(s)
Escarabajos/fisiología , Animales , Conducta Animal , China , América del Norte , Feromonas/fisiología , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA