Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113862, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446664

RESUMEN

Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN no Traducido , ARN Circular , Transducción de Señal , ARN Largo no Codificante/metabolismo , Isquemia
2.
J Headache Pain ; 25(1): 6, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38221631

RESUMEN

BACKGROUND: Migraine is a debilitating neurological disorder with pain profile, suggesting exaggerated mechanosensation. Mechanosensitive receptors of different families, which specifically respond to various mechanical stimuli, have gathered increasing attention due to their potential role in migraine related nociception. Understanding these mechanisms is of principal importance for improved therapeutic strategies. This systematic review comprehensively examines the involvement of mechanosensitive mechanisms in migraine pain pathways. METHODS: A systematic search across the Cochrane Library, Scopus, Web of Science, and Medline was conducted on 8th August 2023 for the period from 2000 to 2023, according to PRISMA guidelines. The review was constructed following a meticulous evaluation by two authors who independently applied rigorous inclusion criteria and quality assessments to the selected studies, upon which all authors collectively wrote the review. RESULTS: We identified 36 relevant studies with our analysis. Additionally, 3 more studies were selected by literature search. The 39 papers included in this systematic review cover the role of the putative mechanosensitive Piezo and K2P, as well as ASICs, NMDA, and TRP family of channels in the migraine pain cascade. The outcome of the available knowledge, including mainly preclinical animal models of migraine and few clinical studies, underscores the intricate relationship between mechanosensitive receptors and migraine pain symptoms. The review presents the mechanisms of activation of mechanosensitive receptors that may be involved in the generation of nociceptive signals and migraine associated clinical symptoms. The gender differences of targeting these receptors as potential therapeutic interventions are also acknowledged as well as the challenges related to respective drug development. CONCLUSIONS: Overall, this analysis identified key molecular players and uncovered significant gaps in our understanding of mechanotransduction in migraine. This review offers a foundation for filling these gaps and suggests novel therapeutic options for migraine treatments based on achievements in the emerging field of mechano-neurobiology.


Asunto(s)
Mecanotransducción Celular , Trastornos Migrañosos , Animales , Mecanotransducción Celular/fisiología , Dolor , Trastornos Migrañosos/diagnóstico , Nocicepción/fisiología
3.
Cell Rep ; 42(11): 113386, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37948181

RESUMEN

Paclitaxel leads to peripheral neuropathy (paclitaxel-induced peripheral neuropathy [PIPN]) in approximately 50% of cancer patients. At present, there are no effective treatment strategies for PIPN, the mechanisms of which also remain unclear. In this study, we performed microbiome and metabolome analysis of feces and serum from breast cancer patients with different PIPN grades due to paclitaxel treatment. Our analysis reveals that levels of deoxycholic acid (DCA) are highly increased because of ingrowth of Clostridium species, which is associated with severe neuropathy. DCA, in turn, elevates serum level of C-C motif ligand 5 (CCL5) and induces CCL5 receptor 5 (CCR5) overexpression in dorsal root ganglion (DRG) through the bile acid receptor Takeda G-protein-coupled receptor 5 (TGR5), contributing to neuronal hyperexcitability. Consistent with this, administration of CCR5 antagonist maraviroc suppresses the development of neuropathic nociception. These results implicate gut microbiota/bile acids/CCR5 signaling in the induction of PIPN, thus suggesting a target for PIPN treatment.


Asunto(s)
Neoplasias de la Mama , Neuralgia , Humanos , Femenino , Paclitaxel/efectos adversos , Neuralgia/inducido químicamente , Maraviroc , Ácido Desoxicólico , Receptores CCR5
4.
J Headache Pain ; 24(1): 38, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37038131

RESUMEN

BACKGROUND: Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS: Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS: The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS: In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.


Asunto(s)
Endocannabinoides , Trastornos Migrañosos , Ratas , Humanos , Animales , Anciano , Endocannabinoides/farmacología , Monoglicéridos/uso terapéutico , Cromatografía Liquida , Nocicepción , Carbamatos/farmacología , Carbamatos/uso terapéutico , Ratas Wistar , Espectrometría de Masas en Tándem , Dolor/tratamiento farmacológico , Amidohidrolasas/metabolismo , Amidohidrolasas/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Monoacilglicerol Lipasas/metabolismo
6.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675204

RESUMEN

It has been proposed that mechanosensitive Piezo1 channels trigger migraine pain in trigeminal nociceptive neurons, but the mechanosensitivity of satellite glial cells (SGCs) supporting neuronal sensitization has not been tested before. Moreover, tools to monitor previous Piezo1 activation are not available. Therefore, by using live calcium imaging with Fluo-4 AM and labeling with FM1-43 dye, we explored a new strategy to identify Piezo channels' activity in mouse trigeminal neurons, SGCs, and isolated meninges. The specific Piezo1 agonist Yoda1 induced calcium transients in both neurons and SGCs, suggesting the functional expression of Piezo1 channels in both types of cells. In Piezo1-transfected HEK cells, FM1-43 produced only a transient fluorescent response, whereas co-application with Yoda1 provided higher transient signals and a remarkable long-lasting FM1-43 'tail response'. A similar Piezo1-related FM1-43 trapping was observed in neurons and SGCs. The non-specific Piezo channel blocker, Gadolinium, inhibited the transient peak, confirming the involvement of Piezo1 receptors. Finally, FM1-43 labeling demonstrated previous activity in meningeal tissues 3.5 h after Yoda1 washout. Our data indicated that trigeminal neurons and SGCs express functional Piezo channels, and their activation provides sustained labeling with FM1-43. This long-lasting labelling can be used to monitor the ongoing and previous activation of Piezo1 channels in the trigeminal nociceptive system, which is implicated in migraine pain.


Asunto(s)
Trastornos Migrañosos , Animales , Ratones , Calcio/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Nocicepción/fisiología , Dolor
7.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293444

RESUMEN

Stroke can be followed by immediate severe headaches. As headaches are initiated by the activation of trigeminal meningeal afferents, we assessed changes in the activity of meningeal afferents in mice subjected to cortical photothrombosis. Cortical photothrombosis induced ipsilateral lesions of variable sizes that were associated with contralateral sensorimotor impairment. Nociceptive firing of mechanosensitive Piezo1 channels, activated by the agonist Yoda1, was increased in meningeal afferents in the ischemic hemispheres. These meningeal afferents also had a higher maximal spike frequency at baseline and during activation of the mechanosensitive Piezo1 channel by Yoda1. Moreover, in these meningeal afferents, nociceptive firing was active during the entire induction of transient receptor potential vanilloid 1 (TRPV1) channels by capsaicin. No such activation was observed on the contralateral hemi-skulls of the same group of mice or in control mice. Our data suggest the involvement of mechanosensitive Piezo1 channels capable of maintaining high-frequency spiking activity and of nociceptive TRPV1 channels in trigeminal headache pain responses after experimental ischemic stroke in mice.


Asunto(s)
Accidente Cerebrovascular , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Proyectos Piloto , Capsaicina/farmacología , Cefalea/patología , Dolor , Canales Catiónicos TRPV , Canales Iónicos
8.
J Neuroinflammation ; 19(1): 147, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35706029

RESUMEN

BACKGROUND: Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aß) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aß. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. METHODS: Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aß pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. RESULTS: We show that PIEZO1 orchestrates Aß clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aß inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aß clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. CONCLUSION: These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aß burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Canales Iónicos/metabolismo , Masculino , Mecanotransducción Celular , Ratones , Ratones Transgénicos , Microglía/metabolismo
9.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743058

RESUMEN

Piezo1 channels are highly mechanically-activated cation channels that can sense and transduce the mechanical stimuli into physiological signals in different tissues including skeletal muscle. In this focused review, we summarize the emerging evidence of Piezo1 channel-mediated effects in the physiology of skeletal muscle, with a particular focus on the role of Piezo1 in controlling myogenic precursor activity and skeletal muscle regeneration and vascularization. The disclosed effects reported by pharmacological activation of Piezo1 channels with the selective agonist Yoda1 indicate a potential impact of Piezo1 channel activity in skeletal muscle regeneration, which is disrupted in various muscular pathological states. All findings reported so far agree with the idea that Piezo1 channels represent a novel, powerful molecular target to develop new therapeutic strategies for preventing or ameliorating skeletal muscle disorders characterized by an impairment of tissue regenerative potential.


Asunto(s)
Canales Iónicos , Mecanotransducción Celular , Transporte Biológico , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Desarrollo de Músculos , Músculo Esquelético/metabolismo
10.
Biomolecules ; 12(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625662

RESUMEN

Homocysteine is a sulfur-containing endogenous amino acid leading to neurotoxic effects at high concentrations. Population studies suggest an association between plasma homocysteine levels and the risk of migraine headaches. The aim of this study was to analyze the sensitivity of rats with prenatal hyperhomocysteinemia (hHCY) in respect of the development of behavioral correlates of headache and spreading cortical depolarization (CSD) in a migraine model induced by the administration of the nitric oxide (NO) donor nitroglycerin. Animals with hHCY were characterized by migraine-related symptoms such as mechanical hyperalgesia, high-level anxiety, photophobia, as well as an enhanced level of neuronal activity in the somatosensory cortex along with a lower threshold of CSD generation. Likewise, acute or chronic intermittent administration of nitroglycerin also induced the development of mechanical allodynia, photophobia and anxiety in control groups. However, these symptoms were more pronounced in rats with hHCY. Unlike hHCY, nitroglycerin administration did not affect the threshold of CSD generation, but like hHCY, increased the background neuronal activity in layers 2/3 and 4 of the cerebral cortex. The latter was more pronounced in animals with hHCY. Thus, the migraine profile associated with hHCY can be further exaggerated in conditions with enhanced levels of migraine triggering the gaseous transmitter NO. Our data are consistent with the view that high levels of plasma homocysteine can act as a risk factor for the development of migraine.


Asunto(s)
Excitabilidad Cortical , Hiperhomocisteinemia , Trastornos Migrañosos , Animales , Ansiedad , Femenino , Homocisteína , Hiperalgesia/inducido químicamente , Hiperhomocisteinemia/inducido químicamente , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/metabolismo , Trastornos Migrañosos/inducido químicamente , Nitroglicerina/toxicidad , Fotofobia , Embarazo , Ratas
11.
Sci Rep ; 12(1): 8804, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614095

RESUMEN

A system of lymphatic vessels has been recently characterized in the meninges, with a postulated role in 'cleaning' the brain via cerebral fluid drainage. As meninges are the origin site of migraine pain, we hypothesized that malfunctioning of the lymphatic system should affect the local trigeminal nociception. To test this hypothesis, we studied nociceptive and inflammatory mechanisms in the hemiskull preparations (containing the meninges) of K14-VEGFR3-Ig (K14) mice lacking the meningeal lymphatic system. We recorded the spiking activity of meningeal afferents and estimated the local mast cells population, calcitonin gene-related peptide (CGRP) and cytokine levels as well as the dural trigeminal innervation in freshly-isolated hemiskull preparations from K14-VEGFR3-Ig (K14) or wild type C57BL/6 mice (WT). Spiking activity data have been confirmed in an acquired model of meningeal lymphatic dysfunction (AAV-mVEGFR3(1-4)Ig induced lymphatic ablation). We found that levels of the pro-inflammatory cytokine IL12-p70 and CGRP, implicated in migraine, were reduced in the meninges of K14 mice, while the levels of the mast cell activator MCP-1 were increased. The other migraine-related pro-inflammatory cytokines (basal and stimulated), did not differ between the two genotypes. The patterns of trigeminal innervation in meninges remained unchanged and we did not observe alterations in basal or ATP-induced nociceptive firing in the meningeal afferents associated with meningeal lymphatic dysfunction. In summary, the lack of meningeal lymphatic system is associated with a new balance between pro- and anti-migraine mediators but does not directly trigger meningeal nociceptive state.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Animales , Citocinas , Inflamación , Sistema Linfático , Meninges , Ratones , Ratones Endogámicos C57BL , Nocicepción
12.
Neurobiol Dis ; 170: 105753, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569719

RESUMEN

Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains. We also demonstrate that the degradation of neuronal mitochondria by astrocytes is increased in AD mice at the age of 6 months onwards. Furthermore, we demonstrate for the first time a similar phenomenon between human neurons and AD astrocytes, and in murine hippocampi in vivo. The results suggest the involvement of S100a4 in impaired mitochondrial transfer between neurons and AD astrocytes together with significant increases in the mitophagy regulator and reactive oxygen species in aged AD astrocytes. These findings demonstrate altered neuron-supporting functions of AD astrocytes and provide a starting point for studying the molecular mechanisms of transmitophagy in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Ratones , Mitofagia , Neuronas/metabolismo
13.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457225

RESUMEN

Migraine is a disabling neurovascular disorder characterized by severe pain with still limited efficient treatments. Endocannabinoids, the endogenous painkillers, emerged, alternative to plant cannabis, as promising analgesics against migraine pain. In this thematic review, we discuss how inhibition of the main endocannabinoid-degrading enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), could raise the level of endocannabinoids (endoCBs) such as 2-AG and anandamide in order to alleviate migraine pain. We describe here: (i) migraine pain signaling pathways, which could serve as specific targets for antinociception; (ii) a divergent distribution of MAGL and FAAH activities in the key regions of the PNS and CNS implicated in migraine pain signaling; (iii) a complexity of anti-nociceptive effects of endoCBs mediated by cannabinoid receptors and through a direct modulation of ion channels in nociceptive neurons; and (iv) the spectrum of emerging potent MAGL and FAAH inhibitors which efficiently increase endoCBs levels. The specific distribution and homeostasis of endoCBs in the main regions of the nociceptive system and their generation 'on demand', along with recent availability of MAGL and FAAH inhibitors suggest new perspectives for endoCBs-mediated analgesia in migraine pain.


Asunto(s)
Endocannabinoides , Trastornos Migrañosos , Amidohidrolasas/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Carbamatos/farmacología , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Hidrólisis , Canales Iónicos , Trastornos Migrañosos/tratamiento farmacológico , Monoacilglicerol Lipasas/metabolismo , Dolor
14.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163452

RESUMEN

The pro-nociceptive role of glutamate in the CNS in migraine pathophysiology is well established. Glutamate, released from trigeminal afferents, activates second order nociceptive neurons in the brainstem. However, the function of peripheral glutamate receptors in the trigeminovascular system suggested as the origin site for migraine pain, is less known. In the current project, we used calcium imaging and patch clamp recordings from trigeminal ganglion (TG) neurons, immunolabelling, CGRP assay and direct electrophysiological recordings from rat meningeal afferents to investigate the role of glutamate in trigeminal nociception. Glutamate, aspartate, and, to a lesser extent, NMDA under free-magnesium conditions, evoked calcium transients in a fraction of isolated TG neurons, indicating functional expression of NMDA receptors. The fraction of NMDA sensitive neurons was increased by the migraine mediator CGRP. NMDA also activated slowly desensitizing currents in 37% of TG neurons. However, neither glutamate nor NMDA changed the level of extracellular CGRP. TG neurons expressed both GluN2A and GluN2B subunits of NMDA receptors. In addition, after removal of magnesium, NMDA activated persistent spiking activity in a fraction of trigeminal nerve fibers in meninges. Thus, glutamate activates NMDA receptors in somas of TG neurons and their meningeal nerve terminals in magnesium-dependent manner. These findings suggest that peripherally released glutamate can promote excitation of meningeal afferents implicated in generation of migraine pain in conditions of inherited or acquired reduced magnesium blockage of NMDA channels and support the usage of magnesium supplements in migraine.


Asunto(s)
Calcio/metabolismo , Ácido Glutámico/farmacología , Nocicepción/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Ganglio del Trigémino/citología , Animales , Ácido Aspártico/farmacología , Células Cultivadas , Masculino , Trastornos Migrañosos/metabolismo , N-Metilaspartato/farmacología , Técnicas de Placa-Clamp , Ratas , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
15.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163293

RESUMEN

Mechanosensitive ion channels, Piezo1 and 2, are activated by pressure and involved in diverse physiological functions, including senses of touch and pain, proprioception and many more. Understanding their function is important for elucidating the mechanosensitive mechanisms of a range of human diseases. Recently, Piezo channels were suggested to be contributors to migraine pain generation. Migraine is typically characterized by allodynia and mechanical hyperalgesia associated with the activation and sensitization of trigeminal ganglion (TG) nerve fibers. Notably, migraine specific medicines are ineffective for other types of pain, suggesting a distinct underlying mechanism. To address, in a straightforward manner, the specificity of the mechanosensitivity of trigeminal vs. somatic nerves, we compared the activity of Piezo1 channels in mouse TG neurons vs. dorsal root ganglia (DRG) neurons. We assessed the functional expression of Piezo1 receptors using a conventional live calcium imaging setup equipped with a multibarrel application system and utilizing a microfluidic chip-based setup. Surprisingly, the TG neurons, despite higher expression of the Piezo1 gene, were less responsive to Piezo1 agonist Yoda1 than the DRG neurons. This difference was more prominent in the chip-based setup, suggesting that certain limitations of the conventional approach, such as turbulence, can be overcome by utilizing microfluidic devices with laminar solution flow.


Asunto(s)
Canales Iónicos/metabolismo , Nervio Trigémino/metabolismo , Animales , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Canales Iónicos/fisiología , Dispositivos Laboratorio en un Chip , Masculino , Mecanotransducción Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Tejido Nervioso/metabolismo , Neuronas/metabolismo , Dolor/metabolismo , Sistema Nervioso Periférico/metabolismo , Pirazinas/farmacología , Tiadiazoles/farmacología , Tacto/fisiología
16.
Neurobiol Dis ; 162: 105584, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915153

RESUMEN

Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of progressive neurodegenerative syndromes. To date, no validated biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. The most common genetic cause underlying FTLD and amyotrophic lateral sclerosis (ALS) is a hexanucleotide repeat expansion in the C9orf72 gene (C9-HRE). FTLD is accompanied by changes in several neurotransmitter systems, including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems and many clinical symptoms can be explained by disturbances in these systems. Here, we aimed to elucidate the effects of the C9-HRE on synaptic function, molecular composition of synapses, and dendritic spine morphology. We overexpressed the pathological C9-HRE in cultured E18 mouse primary hippocampal neurons and characterized the pathological, morphological, and functional changes by biochemical methods, confocal microscopy, and live cell calcium imaging. The C9-HRE-expressing neurons were confirmed to display the pathological RNA foci and DPR proteins. C9-HRE expression led to significant changes in dendritic spine morphologies, as indicated by decreased number of mushroom-type spines and increased number of stubby and thin spines, as well as diminished neuronal branching. These morphological changes were accompanied by concomitantly enhanced susceptibility of the neurons to glutamate-induced excitotoxicity as well as augmented and prolonged responses to excitatory stimuli by glutamate and depolarizing potassium chloride as compared to control neurons. Mechanistically, the hyperexcitation phenotype in the C9-HRE-expressing neurons was found to be underlain by increased activity of extrasynaptic GluN2B-containing N-methyl-d-aspartate (NMDA) receptors. Our results are in accordance with the idea suggesting that C9-HRE is associated with enhanced excitotoxicity and synaptic dysfunction. Thus, therapeutic interventions targeted to alleviate synaptic disturbances might offer efficient avenues for the treatment of patients with C9-HRE-associated FTLD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Espinas Dendríticas/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Ratones , Neuronas/metabolismo
17.
Glia ; 70(4): 650-660, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936134

RESUMEN

Previous studies have implicated several brain cell types in schizophrenia (SCZ), but the genetic impact of astrocytes is unknown. Considering their high complexity in humans, astrocytes are likely key determinants of neurodevelopmental diseases, such as SCZ. Human induced pluripotent stem cell (hiPSC)-derived astrocytes differentiated from five monozygotic twin pairs discordant for SCZ and five healthy subjects were studied for alterations related to high genetic risk and clinical manifestation of SCZ in astrocyte transcriptomics, neuron-astrocyte co-cultures, and in humanized mice. We found gene expression and signaling pathway alterations related to synaptic dysfunction, inflammation, and extracellular matrix components in SCZ astrocytes, and demyelination in SCZ astrocyte transplanted mice. While Ingenuity Pathway Analysis identified SCZ disease and synaptic transmission pathway changes in SCZ astrocytes, the most consistent findings were related to collagen and cell adhesion associated pathways. Neuronal responses to glutamate and GABA differed between astrocytes from control persons, affected twins, and their unaffected co-twins and were normalized by clozapine treatment. SCZ astrocyte cell transplantation to the mouse forebrain caused gene expression changes in synaptic dysfunction and inflammation pathways of mouse brain cells and resulted in behavioral changes in cognitive and olfactory functions. Differentially expressed transcriptomes and signaling pathways related to synaptic functions, inflammation, and especially collagen and glycoprotein 6 pathways indicate abnormal extracellular matrix composition in the brain as one of the key characteristics in the etiology of SCZ.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Animales , Astrocitos/metabolismo , Predisposición Genética a la Enfermedad/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Prosencéfalo/metabolismo , Esquizofrenia/genética
18.
Br J Pharmacol ; 179(3): 400-415, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34643938

RESUMEN

5-hydroxytryptamine (5-HT; serotonin) is traditionally considered as a key mediator implicated in migraine. Multiple 5-HT receptor subtypes contribute to a variety of region-specific functional effects. The raphé nuclei control nociceptive inputs by releasing 5-HT in the brainstem, whereas dural mast cells provide the humoral source of 5-HT in the meninges. Triptans (5-HT1B/D agonists) and ditans (5-HT1F agonists) are the best established 5-HT anti-migraine agents. However, activation of meningeal afferents via ionotropic 5-HT3 receptors results in long-lasting excitatory drive suggesting a pro-nociceptive role for these receptors in migraine. Nevertheless, clinical data do not clearly support the applicability of currently available 5-HT3 antagonists to migraine treatment. The reasons for this might be the presence of 5-HT3 receptors on inhibitory interneurons dampening the excitatory drive, a lack of 5-HT3 A-E subunit-selective antagonists and gender/age-dependent effects. This review is focusing on the controversial role of 5-HT3 receptors in migraine pathology and related pharmacological perspectives of 5-HT ligands. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Asunto(s)
Trastornos Migrañosos , Serotonina , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Núcleos del Rafe/metabolismo , Receptores de Serotonina/metabolismo
19.
Acta Physiol (Oxf) ; 233(4): e13702, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34097801

RESUMEN

AIM: Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres. METHODS: Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction. RESULTS: Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+ ]i transients, without detectable [Ca2+ ]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve-evoked or spontaneous synaptic activity or muscle contractions in adult myofibres. CONCLUSION: Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.


Asunto(s)
Canales Iónicos , Músculo Esquelético , Animales , Transporte Biológico , Diferenciación Celular , Canales Iónicos/metabolismo , Ratones , Músculo Esquelético/metabolismo
20.
Front Cell Neurosci ; 15: 644047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135733

RESUMEN

Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA