Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Blood ; 141(5): 503-518, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35981563

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease. To uncover therapeutic vulnerabilities, we first developed T-ALL patient-derived tumor xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds in vitro. We identified 39 broadly active drugs with antileukemia activity. Because endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL coculture system. We found that ECs provide protumorigenic signals and mitigate drug responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most models, for some drugs the rescue was restricted to individual PDXs, suggesting unique crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL cells and ECs underwent bidirectional transcriptomic changes at the single-cell level, highlighting distinct "education signatures." These changes were linked to bidirectional regulation of multiple pathways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and therapeutic vulnerabilities.


Asunto(s)
Células Endoteliales , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Células Endoteliales/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Comunicación Celular , Técnicas de Cocultivo , Microambiente Tumoral
2.
Cells ; 11(19)2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36230937

RESUMEN

Alpha-2-macroglobulin (A2M) is a protease inhibitor that regulates extracellular matrix (ECM) stability and turnover. Here, we show that A2M is expressed by endothelial cells (ECs) from human eye choroid. We demonstrate that retinal pigment epithelium (RPE)-conditioned medium induces A2M expression specifically in ECs. Experiments using chemical inhibitors, blocking antibodies, and recombinant proteins revealed a key role of VEGF-A in RPE-mediated A2M induction in ECs. Furthermore, incubation of ECs with RPE-conditioned medium reduces matrix metalloproteinase-2 gelatinase activity of culture supernatants, which is partially restored after A2M knockdown in ECs. We propose that dysfunctional RPE or choroidal blood vessels, as observed in retinal diseases such as age-related macular degeneration, may disrupt the crosstalk mechanism we describe here leading to alterations in the homeostasis of choroidal ECM, Bruch's membrane and visual function.


Asunto(s)
alfa 2-Macroglobulinas Asociadas al Embarazo , Epitelio Pigmentado de la Retina , Anticuerpos Bloqueadores , Medios de Cultivo Condicionados , Células Endoteliales , Femenino , Gelatinasas , Humanos , Metaloproteinasa 2 de la Matriz , Embarazo , Inhibidores de Proteasas , Proteínas Recombinantes , Factores de Transcripción , Factor A de Crecimiento Endotelial Vascular
3.
J Exp Med ; 218(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34287647

RESUMEN

Chronic obstructive pulmonary disease (COPD) is marked by airway inflammation and airspace enlargement (emphysema) leading to airflow obstruction and eventual respiratory failure. Microvasculature dysfunction is associated with COPD/emphysema. However, it is not known if abnormal endothelium drives COPD/emphysema pathology and/or if correcting endothelial dysfunction has therapeutic potential. Here, we show the centrality of endothelial cells to the pathogenesis of COPD/emphysema in human tissue and using an elastase-induced murine model of emphysema. Airspace disease showed significant endothelial cell loss, and transcriptional profiling suggested an apoptotic, angiogenic, and inflammatory state. This alveolar destruction was rescued by intravenous delivery of healthy lung endothelial cells. Leucine-rich α-2-glycoprotein-1 (LRG1) was a driver of emphysema, and deletion of Lrg1 from endothelial cells rescued vascular rarefaction and alveolar regression. Hence, targeting endothelial cell biology through regenerative methods and/or inhibition of the LRG1 pathway may represent strategies of immense potential for the treatment of COPD/emphysema.


Asunto(s)
Células Endoteliales/patología , Pulmón/patología , Enfisema Pulmonar/patología , Administración Intravenosa , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/trasplante , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glicoproteínas/metabolismo , Humanos , Pulmón/irrigación sanguínea , Pulmón/fisiopatología , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Elastasa Pancreática/metabolismo , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/genética , Enfisema Pulmonar/fisiopatología , Índice de Severidad de la Enfermedad , Fumar , Transcriptoma/genética
4.
Mol Ther Methods Clin Dev ; 20: 703-715, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33738325

RESUMEN

Ex vivo hematopoietic stem and progenitor cell (HSPC) expansion platforms are under active development, designed to increase HSPC numbers and thus engraftment ability of allogeneic cord blood grafts or autologous HSPCs for gene therapies. Murine and in vitro models have not correlated well with clinical outcomes of HSPC expansion, emphasizing the need for relevant pre-clinical models. Our rhesus macaque HSPC competitive autologous transplantation model utilizing genetically barcoded HSPC allows direct analysis of the relative short and long-term engraftment ability of lentivirally transduced HSPCs, along with additional critical characteristics such as HSPC clonal diversity and lineage bias. We investigated the impact of ex vivo expansion of macaque HSPCs on the engineered endothelial cell line (E-HUVECs) platform regarding safety, engraftment of transduced and E-HUVEC-expanded HSPC over time compared to non-expanded HSPC for up to 51 months post-transplantation, and both clonal diversity and lineage distribution of output from each engrafted cell source. Short and long-term engraftment were comparable for E-HUVEC expanded and the non-expanded HSPCs in both animals, despite extensive proliferation of CD34+ cells during 8 days of ex vivo culture for the E-HUVEC HSPCs, and optimization of harvesting and infusion of HSPCs co-cultured on E-HUVEC in the second animal. Long-term hematopoietic output from both E-HUVEC expanded and unexpanded HSPCs was highly polyclonal and multilineage. Overall, the comparable HSPC kinetics of macaques to humans, the ability to study post-transplant clonal patterns, and simultaneous multi-arm comparisons of grafts without the complication of interpreting allogeneic effects makes our model ideal to test ex vivo HSPC expansion platforms, particularly for gene therapy applications.

5.
J Exp Med ; 217(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196081

RESUMEN

The activity and survival of retinal photoreceptors depend on support functions performed by the retinal pigment epithelium (RPE) and on oxygen and nutrients delivered by blood vessels in the underlying choroid. By combining single-cell and bulk RNA sequencing, we categorized mouse RPE/choroid cell types and characterized the tissue-specific transcriptomic features of choroidal endothelial cells. We found that choroidal endothelium adjacent to the RPE expresses high levels of Indian Hedgehog and identified its downstream target as stromal GLI1+ mesenchymal stem cell-like cells. In vivo genetic impairment of Hedgehog signaling induced significant loss of choroidal mast cells, as well as an altered inflammatory response and exacerbated visual function defects after retinal damage. Our studies reveal the cellular and molecular landscape of adult RPE/choroid and uncover a Hedgehog-regulated choroidal immunomodulatory signaling circuit. These results open new avenues for the study and treatment of retinal vascular diseases and choroid-related inflammatory blinding disorders.


Asunto(s)
Coroides/inmunología , Coroides/patología , Endotelio/inmunología , Inmunomodulación , Análisis de la Célula Individual , Animales , Proliferación Celular , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Inflamación/genética , Mastocitos/metabolismo , Melanocitos/metabolismo , Melanocitos/patología , Ratones Endogámicos C57BL , Especificidad de Órganos , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal , Transcripción Genética , Proteína con Dedos de Zinc GLI1/metabolismo
6.
J Vis Exp ; (135)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29863664

RESUMEN

Infertility is a frequent side effect of chemotherapy and/or radiotherapy and for some patients, cryopreservation of oocytes or embryos is not an option. As an alternative, an increasing number of these patients are choosing to cryopreserve ovarian tissue for autograft following recovery and remission. Despite improvements in outcomes among patients undergoing auto-transplantation of cryopreserved ovarian tissue, efficient revascularization of grafted tissue remains a major obstacle. To mitigate ischemia and thus improve outcomes in patients undergoing auto-transplantation, we developed a vascular cell-based strategy for accelerating perfusion of ovarian tissue. We describe a method for co-transplantation of exogenous endothelial cells (ExECs) with cryopreserved ovarian tissue in a mouse xenograft model. We extend this approach to employ ExECs that have been engineered to constitutively express Anti-Mullerian hormone (AMH), thus enabling sustained paracrine signaling input to ovarian grafts. Co-transplantation with ExECs increased follicular volume and improved antral follicle development, and AMH-expressing ExECs promoted retention of quiescent primordial follicles. This combined strategy may be a useful tool for mitigating ischemia and modulating follicular activation in the context of fertility preservation and/or infertility at large.


Asunto(s)
Células Endoteliales/metabolismo , Ovario/trasplante , Comunicación Paracrina/fisiología , Ingeniería de Tejidos/métodos , Animales , Femenino , Humanos , Ratones
7.
Microcirculation ; 25(5): e12455, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29665185

RESUMEN

OBJECTIVE: Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. METHODS: Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. RESULTS: Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. CONCLUSIONS: Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease.


Asunto(s)
Células Endoteliales/fisiología , Mecanotransducción Celular , Estrés Mecánico , Animales , Ácido Araquidónico/farmacología , Fenómenos Biomecánicos , Células Cultivadas , Pulmón/citología , Ratones , Microcirculación , Miocardio/citología , Propiedades de Superficie
8.
Sci Immunol ; 3(19)2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330161

RESUMEN

The thymus is not only extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood, and this capacity diminishes considerably with age. We show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration via their production of bone morphogenetic protein 4 (BMP4) ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signaling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance, and regeneration, and its downstream targets such as Dll4, a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Células Endoteliales/metabolismo , Regeneración/fisiología , Timo/metabolismo , Timo/fisiología , Animales , Proliferación Celular/fisiología , Células Endoteliales/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Femenino , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Células Madre/metabolismo , Células Madre/fisiología , Linfocitos T/metabolismo , Linfocitos T/fisiología
9.
Sci Rep ; 7(1): 8203, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811567

RESUMEN

Despite major advances in tissue cryopreservation and auto-transplantation, reperfusion ischemia and hypoxia have been reported as major obstacles to successful recovery of the follicular pool within grafted ovarian tissue. We demonstrate a benefit to follicular survival and function in human ovarian tissue that is co-transplanted with exogenous endothelial cells (ExEC). ExECs were capable of forming functionally perfused vessels at the host/graft interface and increased both viability and follicular volume in ExEC-assisted grafts with resumption of antral follicle development in long-term grafts. ExECs that were engineered to constitutively express anti-mullerian hormone (AMH) induced a greater proportion of quiescent primordial follicles than control ExECs, indicating suppression of premature mobilization that has been noted in the context of ovarian tissue transplantation. These findings present a cell-based strategy that combines accelerated perfusion with direct paracrine delivery of a bioactive payload to transplanted ovarian tissue.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio/metabolismo , Neovascularización Fisiológica , Ovario/fisiología , Comunicación Paracrina , Ingeniería de Tejidos , Adolescente , Animales , Biomarcadores , Niño , Criopreservación , Femenino , Preservación de la Fertilidad , Técnica del Anticuerpo Fluorescente , Supervivencia de Injerto , Humanos , Ratones , Trasplantes , Adulto Joven
10.
Radiology ; 285(1): 114-123, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28498793

RESUMEN

Purpose To demonstrate the feasibility of imaging-guided catheter-directed delivery of endothelial cell therapy in a porcine model of cirrhosis for liver regeneration. Materials and Methods After approval from the institutional animal care and use committee, autologous liver endothelial cells were grown from core hepatic specimens from swine. Cirrhosis was induced in swine by means of transcatheter infusion of ethanol and iodized oil into the hepatic artery. Three weeks after induction of cirrhosis, the swine were randomly assigned to receive autologous cell therapy (endothelial cells, n = 4) or control treatment (phosphate-buffered saline, n = 4) by means of imaging-guided transhepatic intraportal catheterization. Fluorescence-activated cell sorting analysis was performed on biopsy samples 1 hour after therapy. Three weeks after intraportal delivery of endothelial cells, the swine were euthanized and the explanted liver underwent quantitative pathologic examination. Statistical analysis was performed with an unpaired t test by using unequal variance. Results Liver endothelial cells were successfully isolated, cultured, and expanded from eight 20-mm, 18-gauge hepatic core samples to 50 × 106 autologous cells per pig. Intraportal delivery of endothelial cell therapy or saline was technically successful in all eight swine, with no complications. Endothelial cells were present in the liver for a minimum of 1 hour after intraportal infusion. Swine treated with endothelial cell therapy showed mean levels of surrogate markers of hepatobiliary injury that were consistent with decreases in hepatic fibrosis and biliary ductal damage relative to the control animals, although statistical significance was not met in this pilot study: The mean percentage of positive pixels at Masson trichrome staining was 7.28% vs 5.57%, respectively (P = .20), the mean proliferation index with cytokeratin wide-spectrum was 2.55 vs 1.13 (P = .06), and the mean proliferation index with Ki67 was 7.08 vs 4.96 (P = .14). Conclusion The results confirm the feasibility of imaging-guided catheter-directed endothelial cell therapy with an intraportal technique for the treatment of cirrhosis in a porcine model. A trend toward decreased liver fibrosis with endothelial cell therapy was observed. Larger animal studies and human studies are necessary to confirm significance. © RSNA, 2017.


Asunto(s)
Trasplante de Células/métodos , Células Endoteliales/trasplante , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/terapia , Cirugía Asistida por Computador/métodos , Animales , Catéteres , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Hígado/química , Hígado/citología , Hígado/diagnóstico por imagen , Regeneración Hepática/fisiología , Porcinos
11.
Nat Commun ; 8: 15374, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28524846

RESUMEN

The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.


Asunto(s)
Membrana Basal/metabolismo , Lámina Basal de la Coroides/metabolismo , Matriz Extracelular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Uniones Estrechas/metabolismo , Animales , Biotinilación , Barrera Hematorretinal/metabolismo , Adhesión Celular , Supervivencia Celular , Células Cultivadas , Coroides/metabolismo , Técnicas de Cocultivo , Electrorretinografía , Femenino , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Permeabilidad , Proteína-Lisina 6-Oxidasa/metabolismo , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
12.
Nature ; 545(7655): 439-445, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28514438

RESUMEN

Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFß and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Endotelio/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Inmunidad Adaptativa , Envejecimiento/genética , Animales , Línea Celular , Linaje de la Célula , Autorrenovación de las Células , Células Clonales/citología , Células Clonales/trasplante , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
13.
Stem Cells Transl Med ; 6(3): 864-876, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28297579

RESUMEN

Successful expansion of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) would benefit many HSPC transplantation and gene therapy/editing applications. However, current expansion technologies have been limited by a loss of multipotency and self-renewal properties ex vivo. We hypothesized that an ex vivo vascular niche would provide prohematopoietic signals to expand HSPCs while maintaining multipotency and self-renewal. To test this hypothesis, BM autologous CD34+ cells were expanded in endothelial cell (EC) coculture and transplanted in nonhuman primates. CD34+ C38- HSPCs cocultured with ECs expanded up to 17-fold, with a significant increase in hematopoietic colony-forming activity compared with cells cultured with cytokines alone (colony-forming unit-granulocyte-erythroid-macrophage-monocyte; p < .005). BM CD34+ cells that were transduced with green fluorescent protein lentivirus vector and expanded on ECs engrafted long term with multilineage polyclonal reconstitution. Gene marking was observed in granulocytes, lymphocytes, platelets, and erythrocytes. Whole transcriptome analysis indicated that EC coculture altered the expression profile of 75 genes in the BM CD34+ cells without impeding the long-term engraftment potential. These findings show that an ex vivo vascular niche is an effective platform for expansion of adult BM HSPCs. Stem Cells Translational Medicine 2017;6:864-876.


Asunto(s)
Células de la Médula Ósea/citología , Células Endoteliales/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Animales , Antígenos CD34/metabolismo , Linaje de la Célula , Proliferación Celular , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Humanos , Primates , Factores de Tiempo
14.
Nat Commun ; 8: 13963, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28091527

RESUMEN

Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.


Asunto(s)
Células Endoteliales/trasplante , Endotelio Vascular/metabolismo , Factores de Transcripción SOXF/metabolismo , Enfermedades Vasculares/terapia , Amnios/citología , Amnios/embriología , Amnios/metabolismo , Animales , Células Endoteliales/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Regeneración , Factores de Transcripción SOXF/genética , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/fisiopatología
15.
Nat Commun ; 7: 13829, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28000664

RESUMEN

Haematopoietic stem cells (HSCs) reside in distinct niches within the bone marrow (BM) microenvironment, comprised of endothelial cells (ECs) and tightly associated perivascular constituents that regulate haematopoiesis through the expression of paracrine factors. Here we report that the canonical NF-κB pathway in the BM vascular niche is a critical signalling axis that regulates HSC function at steady state and following myelosuppressive insult, in which inhibition of EC NF-κB promotes improved HSC function and pan-haematopoietic recovery. Mice expressing an endothelial-specific dominant negative IκBα cassette under the Tie2 promoter display a marked increase in HSC activity and self-renewal, while promoting the accelerated recovery of haematopoiesis following myelosuppression, in part through protection of the BM microenvironment following radiation and chemotherapeutic-induced insult. Moreover, transplantation of NF-κB-inhibited BM ECs enhanced haematopoietic recovery and protected mice from pancytopenia-induced death. These findings pave the way for development of niche-specific cellular approaches for the treatment of haematological disorders requiring myelosuppressive regimens.


Asunto(s)
Células Endoteliales/metabolismo , Hematopoyesis , FN-kappa B/metabolismo , Transducción de Señal , Animales , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Pancitopenia/terapia , Nicho de Células Madre
16.
Radiat Res ; 186(2): 196-202, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27459700

RESUMEN

Current therapeutic approaches for treatment of exposure to radiation involve the use of antioxidants, chelating agents, recombinant growth factors and transplantation of stem cells (e.g., hematopoietic stem cell transplantation). However, exposure to high-dose radiation is associated with severe damage to the vasculature of vital organs, often leading to impaired healing, tissue necrosis, thrombosis and defective regeneration caused by aberrant fibrosis. It is very unlikely that infusion of protective chemicals will reverse severe damage to the vascular endothelial cells (ECs). The role of irradiated vasculature in mediating acute and chronic radiation syndromes has not been fully appreciated or well studied. New approaches are necessary to replace and reconstitute ECs in organs that are irreversibly damaged by radiation. We have set forth the novel concept that ECs provide paracrine signals, also known as angiocrine signals, which not only promote healing of irradiated tissue but also direct organ regeneration without provoking fibrosis. We have developed innovative technologies that enable manufacturing and banking of human GMP-grade ECs. These ECs can be transplanted intravenously to home to and engraft to injured tissues where they augment organ repair, while preventing maladaptive fibrosis. In the past, therapeutic transplantation of ECs was not possible due to a shortage of availability of suitable donor cell sources and preclinical models, a lack of understanding of the immune privilege of ECs, and inadequate methodologies for expansion and banking of engraftable ECs. Recent advances made by our group as well as other laboratories have breached the most significant of these obstacles with the development of technologies to manufacture clinical-scale quantities of GMP-grade and human ECs in culture, including genetically diverse reprogrammed human amniotic cells into vascular ECs (rAC-VECs) or human pluripotent stem cells into vascular ECs (iVECs). This approach provides a path to therapeutic EC transplantation that can be infused concomitantly or sequentially with hematopoietic stem cell transplantation more than 24 h after irradiation to support multi-organ regeneration, thereby improving immediate and long-term survival, while limiting long-term morbidity resulting from nonregenerative damage repair pathways.


Asunto(s)
Trasplante de Células/métodos , Células Endoteliales/trasplante , Traumatismos por Radiación/patología , Traumatismos por Radiación/terapia , Enfermedad Aguda , Animales , Enfermedad Crónica , Humanos
17.
Nat Med ; 22(2): 154-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26779814

RESUMEN

Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/ß-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Capilares/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lesión Pulmonar/metabolismo , Pulmón/metabolismo , Proteínas de la Membrana/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores CXCR/metabolismo , Regeneración/fisiología , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Proteínas de Unión al Calcio/antagonistas & inhibidores , Capilares/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Fibroblastos/efectos de los fármacos , Fibrosis , Técnica del Anticuerpo Fluorescente , Humanos , Ácido Clorhídrico/toxicidad , Proteína Jagged-1 , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Oligopéptidos/farmacología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Circulación Pulmonar/efectos de los fármacos , Circulación Pulmonar/fisiología , ARN Interferente Pequeño/farmacología , Receptores CXCR/agonistas , Receptores Notch/metabolismo , Regeneración/efectos de los fármacos , Proteínas Serrate-Jagged , Proteína smad3/efectos de los fármacos , Proteína smad3/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt
18.
Nat Protoc ; 10(12): 1975-85, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26540589

RESUMEN

Endothelial cells (ECs) have essential roles in organ development and regeneration, and therefore they could be used for regenerative therapies. However, generation of abundant functional endothelium from pluripotent stem cells has been difficult because ECs generated by many existing strategies have limited proliferative potential and display vascular instability. The latter difficulty is of particular importance because cells that lose their identity over time could be unsuitable for therapeutic use. Here, we describe a 3-week platform for directly converting human mid-gestation lineage-committed amniotic fluid-derived cells (ACs) into a stable and expandable population of vascular ECs (rAC-VECs) without using pluripotency factors. By transient expression of the ETS transcription factor ETV2 for 2 weeks and constitutive expression the ETS transcription factors FLI1 and ERG1, concomitant with TGF-ß inhibition for 3 weeks, epithelial and mesenchymal ACs are converted, with high efficiency, into functional rAC-VECs. These rAC-VECs maintain their vascular repertoire and morphology over numerous passages in vitro, and they form functional vessels when implanted in vivo. rAC-VECs can be detected in recipient mice months after implantation. Thus, rAC-VECs can be used to establish a cellular platform to uncover the molecular determinants of vascular development and heterogeneity and potentially represent ideal ECs for the treatment of regenerative disorders.


Asunto(s)
Líquido Amniótico/citología , Transdiferenciación Celular , Células Madre Embrionarias/citología , Células Endoteliales/citología , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/trasplante , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones SCID , Proteína Proto-Oncogénica c-fli-1/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
19.
J Clin Invest ; 125(3): 1243-54, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25664855

RESUMEN

Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC-derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina-induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain-null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood-derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence.


Asunto(s)
Endotelio Vascular/citología , Células Madre Hematopoyéticas/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Multipotentes/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/fisiología , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Humanos , Macaca nemestrina , Masculino , Ratones Endogámicos NOD , Ratones SCID , Nicho de Células Madre
20.
Nat Biotechnol ; 32(11): 1151-1157, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25306246

RESUMEN

The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony-forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel-forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >10(8) ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Endoteliales/citología , Células Madre Pluripotentes/citología , Animales , Proliferación Celular/genética , Células Endoteliales/metabolismo , Sangre Fetal/citología , Humanos , Ratones , Neuropilina-1/metabolismo , Células Madre/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA