Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancers (Basel) ; 16(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39123404

RESUMEN

How hematopoietic stem and progenitor cell (HSPC) fate decisions are affected by genetic alterations acquired during AML leukemogenesis is poorly understood and mainly explored in animal models. Here, we study isocitrate dehydrogenase (IDH) gene mutations in the human model of HSPC and discuss the available literature on this topic. IDH1/2 mutations occur in ~20% of AML cases, are recognized among the mutations earliest acquired during leukemogenesis, and are targets of specific inhibitors (ivosidenib and enasidenib, respectively). In order to investigate the direct effects of these mutations on HSPCs, we expressed IDH1-R132H or IDH2-R140Q mutants into human CD34+ healthy donor cells via lentiviral transduction and analyzed the colony-forming unit (CFU) ability. CFU ability was dramatically compromised with a complete trilineage block of differentiation. Strikingly, the block was reversed by specific inhibitors, confirming that it was a specific effect induced by the mutants. In line with this observation, the CD34+ leukemic precursors isolated from a patient with IDH2-mutated AML at baseline and during enasidenib treatment showed progressive and marked improvements in their fitness over time, in terms of CFU ability and propensity to differentiate. They attained clonal trilinear reconstitution of hematopoiesis and complete hematological remission.

2.
Leukemia ; 36(10): 2351-2367, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36008542

RESUMEN

Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30-35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Adulto , Dactinomicina/uso terapéutico , Histonas/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN , Receptores de Antígenos de Linfocitos T/genética
3.
Biomolecules ; 12(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35883460

RESUMEN

The administration of combinations of drugs is a method widely used in the treatment of different pathologies as it can lead to an increase in the therapeutic effect and a reduction in the dose compared to the administration of single drugs. For these reasons, it is of interest to study combinations of drugs and to determine whether a specific combination has a synergistic, antagonistic or additive effect. Various mathematical models have been developed, which use different methods to evaluate the synergy of a combination of drugs. We have developed an open access and easy to use app that allows different models to be explored and the most fitting to be chosen for the specific experimental data: SiCoDEA (Single and Combined Drug Effect Analysis). Despite the existence of other tools for drug combination analysis, SiCoDEA remains the most complete and flexible since it offers options such as outlier removal or the ability to choose between different models for analysis. SiCoDEA is an easy to use tool for analyzing drug combination data and to have a view of the various steps and offer different results based on the model chosen.


Asunto(s)
Aplicaciones Móviles , Combinación de Medicamentos , Sinergismo Farmacológico , Preparaciones Farmacéuticas
4.
Blood ; 138(25): 2696-2701, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34343258

RESUMEN

Nucleophosmin (NPM1) mutations in acute myeloid leukemia (AML) affect exon 12, but also sporadically affect exons 9 and 11, causing changes at the protein C-terminal end (tryptophan loss, nuclear export signal [NES] motif creation) that lead to aberrant cytoplasmic NPM1 (NPM1c+), detectable by immunohistochemistry. Combining immunohistochemistry and molecular analyses in 929 patients with AML, we found non-exon 12 NPM1 mutations in 5 (1.3%) of 387 NPM1c+ cases. Besides mutations in exons 9 (n = 1) and 11 (n = 1), novel exon 5 mutations were discovered (n = 3). Another exon 5 mutation was identified in an additional 141 patients with AML selected for wild-type NPM1 exon 12. Three NPM1 rearrangements (NPM1/RPP30, NPM1/SETBP1, NPM1/CCDC28A) were detected and characterized among 13 979 AML samples screened by cytogenetic/fluorescence in situ hybridization and RNA sequencing. Functional studies demonstrated that in AML cases, new NPM1 proteins harbored an efficient extra NES, either newly created or already present in the fusion partner, ensuring its cytoplasmic accumulation. Our findings support NPM1 cytoplasmic relocation as critical for leukemogenesis and reinforce the role of immunohistochemistry in predicting AML-associated NPM1 genetic lesions. This study highlights the need to develop new assays for molecular diagnosis and monitoring of NPM1-mutated AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , Mutación , Nucleofosmina/genética , Adulto , Exones , Femenino , Fusión Génica , Reordenamiento Génico , Humanos , Masculino , Persona de Mediana Edad
5.
Leukemia ; 35(9): 2552-2562, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33654209

RESUMEN

Acute myeloid leukemia (AML) with mutated NPM1 accounts for one-third of newly diagnosed AML. Despite recent advances, treatment of relapsed/refractory NPM1-mutated AML remains challenging, with the majority of patients eventually dying due to disease progression. Moreover, the prognosis is particularly poor in elderly and unfit patients, mainly because they cannot receive intensive treatment. Therefore, alternative treatment strategies are needed. Dactinomycin is a low-cost chemotherapeutic agent, which has been anecdotally reported to induce remission in NPM1-mutated patients, although its mechanism of action remains unclear. Here, we describe the results of a single-center phase 2 pilot study investigating the safety and efficacy of single-agent dactinomycin in relapsed/refractory NPM1-mutated adult AML patients, demonstrating that this drug can induce complete responses and is relatively well tolerated. We also provide evidence that the activity of dactinomycin associates with nucleolar stress both in vitro and in vivo in patients. Finally, we show that low-dose dactinomycin generates more efficient stress response in cells expressing NPM1 mutant compared to wild-type cells, suggesting that NPM1-mutated AML may be more sensitive to nucleolar stress. In conclusion, we establish that dactinomycin is a potential therapeutic alternative in relapsed/refractory NPM1-mutated AML that deserves further investigation in larger clinical studies.


Asunto(s)
Nucléolo Celular/efectos de los fármacos , Dactinomicina/uso terapéutico , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Nucleares/genética , Anciano , Antibióticos Antineoplásicos/uso terapéutico , Nucléolo Celular/patología , Femenino , Estudios de Seguimiento , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Nucleofosmina , Proyectos Piloto , Pronóstico , Inducción de Remisión , Terapia Recuperativa
6.
Cancers (Basel) ; 13(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525388

RESUMEN

NPM1-mutated (NPM1mut) acute myeloid leukemia (AML) comprises about 30% of newly diagnosed AML in adults. Despite notable advances in the treatment of this frequent AML subtype, about 50% of NPM1mut AML patients treated with conventional treatment die due to disease progression. CD123 has been identified as potential target for immunotherapy in AML, and several anti-CD123 therapeutic approaches have been developed for AML resistant to conventional therapies. As this antigen has been previously reported to be expressed by NPM1mut cells, we performed a deep flow cytometry analysis of CD123 expression in a large cohort of NPM1mut and wild-type samples, examining the whole blastic population, as well as CD34+CD38- leukemic cells. We demonstrate that CD123 is highly expressed on NPM1mut cells, with particularly high expression levels showed by CD34+CD38- leukemic cells. Additionally, CD123 expression was further enhanced by FLT3 mutations, which frequently co-occur with NPM1 mutations. Our results identify NPM1-mutated and particularly NPM1/FLT3 double-mutated AML as disease subsets that may benefit from anti-CD123 targeted therapies.

7.
Cancer Cell ; 34(3): 499-512.e9, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205049

RESUMEN

NPM1 is the most frequently mutated gene in cytogenetically normal acute myeloid leukemia (AML). In AML cells, NPM1 mutations result in abnormal cytoplasmic localization of the mutant protein (NPM1c); however, it is unknown whether NPM1c is required to maintain the leukemic state. Here, we show that loss of NPM1c from the cytoplasm, either through nuclear relocalization or targeted degradation, results in immediate downregulation of homeobox (HOX) genes followed by differentiation. Finally, we show that XPO1 inhibition relocalizes NPM1c to the nucleus, promotes differentiation of AML cells, and prolongs survival of Npm1-mutated leukemic mice. We describe an exquisite dependency of NPM1-mutant AML cells on NPM1c, providing the rationale for the use of nuclear export inhibitors in AML with mutated NPM1.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Anciano , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Hidrazinas/farmacología , Carioferinas/antagonistas & inhibidores , Carioferinas/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Ratones , Mutación , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteolisis , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Exportina 1
8.
Blood ; 125(22): 3455-65, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25795919

RESUMEN

Nucleophosmin (NPM1) mutations represent an attractive therapeutic target in acute myeloid leukemia (AML) because they are common (∼30% AML), stable, and behave as a founder genetic lesion. Oncoprotein targeting can be a successful strategy to treat AML, as proved in acute promyelocytic leukemia by treatment with all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO), which degrade the promyelocytic leukemia (PML)-retinoic acid receptor fusion protein. Adjunct of ATRA to chemotherapy was reported to be beneficial for NPM1-mutated AML patients. Leukemic cells with NPM1 mutation also showed sensibility to ATO in vitro. Here, we explore the mechanisms underlying these observations and show that ATO/ATRA induce proteasome-dependent degradation of NPM1 leukemic protein and apoptosis in NPM1-mutated AML cell lines and primary patients' cells. We also show that PML intracellular distribution is altered in NPM1-mutated AML cells and reverted by arsenic through oxidative stress induction. Interestingly, similarly to what was described for PML, oxidative stress also mediates ATO-induced degradation of the NPM1 mutant oncoprotein. Strikingly, NPM1 mutant downregulation by ATO/ATRA was shown to potentiate response to the anthracyclin daunorubicin. These findings provide experimental evidence for further exploring ATO/ATRA in preclinical NPM1-mutated AML in vivo models and a rationale for exploiting these compounds in chemotherapeutic regimens in clinics.


Asunto(s)
Apoptosis/efectos de los fármacos , Arsenicales/farmacología , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Óxidos/farmacología , Tretinoina/farmacología , Animales , Apoptosis/genética , Trióxido de Arsénico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones SCID , Proteínas Mutantes/efectos de los fármacos , Proteínas Mutantes/metabolismo , Mutación , Proteínas Nucleares/efectos de los fármacos , Nucleofosmina , Proteínas Oncogénicas/efectos de los fármacos , Proteínas Oncogénicas/metabolismo , Células Tumorales Cultivadas , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Blood ; 121(17): 3447-58, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23435463

RESUMEN

The NPM1 mutation is the most frequent genetic alteration thus far identified in acute myeloid leukemia (AML). Despite progress in the clinical and biological characterization of NPM1-mutated AML, the role of NPM1 mutation in leukemogenesis in vivo has not been fully elucidated. We report a novel mouse model that conditionally expresses the most common human NPM1 mutation (type A) in the hematopoietic compartment. In Npm1-TCTG/WT;Cre(+) mice, the NPM1 mutant localized in the cytoplasm (NPMc(+)) of bone marrow (BM) cells. The mutant mice developed no AML after 1.5-year follow-up. However, NPMc(+) expression determined a significant platelet count reduction and an expansion of the megakaryocytic compartment in the BM and spleen. Serum thrombopoietin levels overlapped in mutant vs control mice, and BM cells from Npm1-TCTG/WT;Cre(+) mice formed more megakaryocytic colonies in vitro. Moreover, we demonstrated the up-regulation of microRNAs (miRNAs; miR-10a, miR-10b, and miR-20a) inhibiting megakaryocytic differentiation along with increased expression of HOXB genes. Notably, these findings mimic those of human NPM1-mutated AML, which also exhibits a similar miRNA profile and expansion of the megakaryocytic compartment. Our mouse model provides evidence that the NPM1 mutant affects megakaryocytic development, further expanding our knowledge of the role of NPM1 mutant in leukemogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Integrasas/metabolismo , Leucemia Mieloide Aguda/etiología , Megacariocitos/patología , Mutación/genética , Proteínas Nucleares/genética , Trombopoyesis/genética , Animales , Apoptosis , Western Blotting , Diferenciación Celular , Proliferación Celular , Ensayo de Unidades Formadoras de Colonias , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Leucemia Mieloide Aguda/patología , Megacariocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Nucleofosmina , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Blood Rev ; 25(6): 247-54, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21724308

RESUMEN

Acute myeloid leukemia (AML) carrying nucleophosmin (NPM1) mutations displays distinct molecular and clinical-pathological features that led to its inclusion as provisional entity in 2008 WHO classification of myeloid neoplasms. Since NPM1 mutations behave as a founder genetic lesion in AML, they could be an attractive target for therapeutic intervention. Here, we discuss the potential for developing targeted therapies for NPM1-mutated AML with focus on: (i) interfering with the abnormal traffic of the NPM1 leukemic mutant, i.e., its cytoplasmic dislocation; (ii) disrupting the nucleolar structure/function by interfering with residual wild-type nucleophosmin and other nucleolar components acting as hub proteins; and (iii) evaluating the activity of epigenetic drugs (e.g., 5-azacytidine) or agents acting on differentiation and apoptosis. As quantitative assessment of NPM1 mutated transcript copies now provides the means to measure minimal residual disease, we also discuss the potential for intervening in NPM1-mutated AML before overt hematological relapse occurs (so-called pre-emptive therapy).


Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Proteínas Nucleares/genética , Animales , Antineoplásicos/farmacología , Epigénesis Genética/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Nucleofosmina , Transporte de Proteínas/efectos de los fármacos
11.
Blood ; 116(19): 3907-22, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20634376

RESUMEN

Acute myeloid leukemia (AML) with mutated NPM1 shows distinctive biologic and clinical features, including absent/low CD34 expression, the significance of which remains unclear. Therefore, we analyzed CD34(+) cells from 41 NPM1-mutated AML. At flow cytometry, 31 of 41 samples contained less than 10% cells showing low intensity CD34 positivity and variable expression of CD38. Mutational analysis and/or Western blotting of purified CD34(+) cells from 17 patients revealed NPM1-mutated gene and/or protein in all. Immunohistochemistry of trephine bone marrow biopsies and/or flow cytometry proved CD34(+) leukemia cells from NPM1-mutated AML had aberrant nucleophosmin expression in cytoplasm. NPM1-mutated gene and/or protein was also confirmed in a CD34(+) subfraction exhibiting the phenotype (CD34(+)/CD38(-)/CD123(+)/CD33(+)/CD90(-)) of leukemic stem cells. When transplanted into immunocompromised mice, CD34(+) cells generated a leukemia recapitulating, both morphologically and immunohistochemically (aberrant cytoplasmic nucleophosmin, CD34 negativity), the original patient's disease. These results indicate that the CD34(+) fraction in NPM1-mutated AML belongs to the leukemic clone and contains NPM1-mutated cells exhibiting properties typical of leukemia-initiating cells. CD34(-) cells from few cases (2/15) also showed significant leukemia-initiating cell potential in immunocompromised mice. This study provides further evidence that NPM1 mutation is a founder genetic lesion and has potential implications for the cell-of-origin and targeted therapy of NPM1-mutated AML.


Asunto(s)
Antígenos CD34/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Proteínas Mutantes/genética , Proteínas Nucleares/genética , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Citoplasma/metabolismo , Humanos , Inmunofenotipificación , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Mutantes/metabolismo , Trasplante de Neoplasias , Proteínas Nucleares/metabolismo , Nucleofosmina , Trasplante Heterólogo
12.
Cancer Lett ; 246(1-2): 274-81, 2007 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-16650526

RESUMEN

Human Papillomavirus type 77 is a skin type found in non-melanoma skin cancers of immuno-compromised individuals. Although, the HPV77 E6 oncoprotein has been well studied, nothing is known about E7. Studies on mucosal HPV types (e.g. HPV16) showed that E7 deregulates the cell cycle by binding to and promoting degradation of retinoblastoma protein (pRb). Here, we characterized the impact of HPV77 E7 on the cell cycle. We observed that HPV77 E7 associated with pRb with a lower affinity than HPV16 E7, promoting weakly its degradation. Although, HPV16 E7 led to cellular proliferation and accumulation of the cell cycle inhibitor p16(INK4a), both events were not clearly observed in HPV77 E7 cells. Together, these data indicate that HPV77 E7 does not efficiently deregulate the cell cycle, in contrast to several E7s of mucosal HPV types.


Asunto(s)
Ciclo Celular/fisiología , Proteínas E7 de Papillomavirus/metabolismo , Animales , Ciclo Celular/genética , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Expresión Génica , Vectores Genéticos/genética , Humanos , Immunoblotting , Ratones , Células 3T3 NIH , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/genética , Unión Proteica , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA