RESUMEN
INTRODUCTION: Lung Ultrasound is an accessible, low-cost technique that has demonstrated its usefulness in the prognostic stratification of COVID-19 patients. In addition, according to previous studies, it can guide us towards the potential aetiology, especially in epidemic situations such as the current one. PATIENTS AND METHODS: 40 patients were prospectively recruited, 30 with confirmed SARS-CoV-2 pneumonia and 10 with community-acquired pneumonia (CAP). The patients included underwent both a chest X-ray and ultrasound. RESULTS: There were no differences in the 2 groups in terms of clinical and laboratory characteristics. The main ultrasound findings in the SARS-CoV-2 group were the presence of confluent B lines and subpleural consolidations and hepatinization in the CAP group. Pleural effusion was more frequent in the CAP group. There were no normal lung ultrasound exams. Analysis of the area under the curve (AUC) curves showed an area under the curve for Lung Ultrasound of 89.2% (95% CI: 75%.0-100%, pâ¯<â¯.001) in the identification of SARS-CoV-2 pneumonia. The cut-off value for the lung score of 10 had a sensitivity of 93.3% and a specificity of 80.0% (pâ¯<â¯.001). DISCUSSION: The combination of the findings of the Lung Ultrasound, with a Lung Score greater than 10, added to the rest of the additional tests, can be an excellent tool to predict the aetiology of the pneumonia.
Asunto(s)
COVID-19 , Neumonía Bacteriana , Humanos , Pandemias , SARS-CoV-2 , COVID-19/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Neumonía Bacteriana/diagnóstico por imagenRESUMEN
Introduction: Lung ultrasound is an accessible, low-cost technique that has demonstrated its usefulness in the prognostic stratification of COVID-19 patients. In addition, according to previous studies, it can guide us towards the potential aetiology, especially in epidemic situations such as the current one. Patients and methods: 40 patients were prospectively recruited, 30 with confirmed SARS-CoV-2 pneumonia and 10 with community-acquired pneumonia. The patients included underwent both a chest X-ray and ultrasound. Results: There were no differences in the 2 groups in terms of clinical and laboratory characteristics. The main ultrasound findings in the SARS-CoV-2 group were the presence of confluent B lines and subpleural consolidations and hepatinization in the community-acquired pneumonia group. Pleural effusion was more frequent in the community-acquired pneumonia group. There were no normal lung ultrasound exams. Analysis of the area under the curve curves showed an area under the curve for lung ultrasound of 89.2% (95% CI: 75.0-100%, p < .001) in the identification of SARS-CoV-2 pneumonia. The cut-off value for the lung score of 10 had a sensitivity of 93.3% and a specificity of 80.0% (p < .001). Discussion: The combination of the findings of the lung ultrasound, with a lung score greater than 10, added to the rest of the additional tests, can be an excellent tool to predict the aetiology of the pneumonia.