RESUMEN
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Asunto(s)
Epigénesis Genética , Humanos , Metilación de ADN/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Femenino , Embarazo , Frutas , AnimalesRESUMEN
Diabetic keratopathy (DK) is the major complication of the cornea characterizing diabetes-affected patients. This ocular pathology is correlated with the hyperglycemic state leading to delayed corneal wound healing and recurrent corneal ulcers. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution throughout the body, and exerting cytoprotective effects in the neural and non-neuronal parts of the eye, including the cornea. The purpose of the present study was to investigate whether changes in PACAP expression can concur for delayed epithelial wound healing in diabetic cornea and whether the protective effect of the peptide could be mediated through the activation of the EGFR signaling pathway, which has been reported to be impaired in DK. Expression and distribution of PACAP, PAC1R, and EGFR were investigated through immunohistochemistry analysis in the cornea of normal and diabetic rats. The role of the peptide on wound healing during DK was evaluated in an in vitro model represented by rabbit corneal epithelial cells grown in high glucose conditions. Western blotting and immunofluorescence analysis were used to examine the ability of PACAP to induce the activation of the EGFR/ERK1/2 signaling pathway. Our results showed that in diabetic cornea the expression of PACAP, PAC1R, and EGFR is drastically reduced. The treatment with PACAP via PAC1R activation enhanced cell viability and corneal epithelium wound healing in cells grown under high glucose conditions. Furthermore, both EGFR and ERK1/2 signaling was induced upon the peptide treatment. Overall, our results showed the trophic efficiency of PACAP for enhancing the corneal epithelium re-epithelialization suggesting that the peptide could be beneficially valuable as a treatment for DK.
Asunto(s)
Diabetes Mellitus Experimental , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Humanos , Conejos , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glucosa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Transducción de SeñalRESUMEN
In the area of drug discovery, repurposing strategies represent an approach to discover new uses of approved drugs besides their original indications. We used this approach to investigate the effects of dimethyl fumarate (DMF), a drug approved for relapsing-remitting multiple sclerosis and psoriasis treatment, on early injury associated with diabetic retinopathy (DR). We used an in vivo streptozotocin (STZ)-induced diabetic rat model. Diabetes was induced by a single injection of STZ in rats, and after 1 week, a group of animals was treated with a daily intraperitoneal injection of DMF or a vehicle. Three weeks after diabetes induction, the retinal expression levels of key enzymes involved in DR were evaluated. In particular, the biomarkers COX-2, iNOS, and HO-1 were assessed via Western blot and immunohistochemistry analysis. Diabetic rats showed a significant retinal upregulation of COX-2 and iNOS compared to the retina of normal rats (non-diabetic), and an increase in HO-1 was also observed in the STZ group. This latter result was due to a mechanism of protection elicited by the pathological condition. DMF treatment significantly induced the retinal expression of HO-1 in STZ-induced diabetic animals with a reduction in iNOS and COX-2 retinal levels. Taken together, these results suggested that DMF might be useful to counteract the inflammatory process and the oxidative response in DR. In conclusion, we believe that DMF represents a potential candidate to treat diabetic retinopathy and warrants further in vivo and clinical evaluation.
RESUMEN
During diabetic retinopathy (DR) progression, the retina undergoes various metabolic changes, including hypoxia-signalling cascade induction in the cells of retinal pigmented epithelium (RPE). The overexpression of hypoxic inducible factors causes transcription of many target genes including vascular endothelial growth factor (VEGF). The RPE cells form the outer blood retinal barrier (oBRB), a specialized structure that regulates ions and metabolites flux into the retina to maintain a suitable quality of its extracellular microenvironment. VEGF worsens retinal condition since its secretion from the basolateral compartment of RPE cells compromises the barrier's integrity and induces choroidal neovascularization. In this work, we hypothesized that PACAP prevents the damage to oBRB and controls choroidal neovascularization through the induction of ADNP. Firstly, we demonstrated that ADNP is expressed in Streptozotocin (STZ)-induced diabetic animals. To validate our hypothesis, we cultured endothelial cells (H5V) forming vessels-like structures, in a conditioned medium (CM) derived from ARPE-19 cells exposed to hyperglycaemic/hypoxic insult, containing a known VEGF concentration. The involvement of PACAP-ADNP axis on oBRB integrity was evaluated through the measurement of trans-epithelial-electrical resistance and permeability assay performed on ARPE cell monolayer cultured in CM and by analysing the expression of two tight junction forming proteins, ZO1 and occludin. By culturing H5V in CM, we demonstrated that PACAP-ADNP axis counteracted vessels-like structures formation promoted by VEGF. In conclusion, the results suggested a primary role of PACAP/ADNP axis in preventing oBRB damage and in controlling aberrant choroidal neovascularization induced by VEGF secreted from RPE cells exposed to hyperglycaemia/hypoxic insult in DR.
Asunto(s)
Neovascularización Coroidal , Retinopatía Diabética , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Células Endoteliales/metabolismo , Retina/metabolismo , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Retinopatía Diabética/metabolismo , Barrera Hematorretinal/metabolismo , Hipoxia/metabolismoRESUMEN
The corneal epithelium, representing the outermost layer of the cornea, acts as a barrier to protect the eye against external insults such as ultraviolet B (UV-B) radiations. The inflammatory response induced by these adverse events can alter the corneal structure, leading to visual impairment. In a previous study, we demonstrated the positive effects of NAP, the active fragment of activity-dependent protein (ADNP), against oxidative stress induced by UV-B radiations. Here, we investigated its role to counteract the inflammatory event triggered by this insult contributing to the disruption of the corneal epithelial barrier. The results indicated that NAP treatment prevents UV-B-induced inflammatory processes by affecting IL-1ß cytokine expression and NF-κB activation, as well as maintaining corneal epithelial barrier integrity. These findings may be useful for the future development of an NAP-based therapy for corneal disease.
Asunto(s)
Epitelio Corneal , Oligopéptidos/farmacología , Mediadores de Inflamación , Péptidos , CórneaRESUMEN
Introduction: To evaluate the pharmacological profile of ocular formulations based on cross-linked sodium hyaluronate (CL-SH), taurine (Tau), vitamin B6 (Vit B6) and vitamin B12 (Vit B12) using in vitro and in vivo paradigms. Methods: Rabbit corneal epithelial cells were used to assess wound healing and reactive oxygen species (ROS) formation by scratch assay and oxidative stress (0.3 mM H2O2; 30 min), respectively with or without ocular formulations exposure. In vivo studies were carried out on albino rabbits to evaluate corneal nerve regeneration and corneal wound healing with or without treatment with six different formulations. Animals were anesthetized, the corneal epithelium was removed, and formulations were topically administered (30 µL/eye; 3 times/day for 6 days). Slit-lamp observation was carried out at different time points. After 6 days the animals were killed, and corneas were collected to evaluate corneal re-innervation by immunohistochemistry of selective neuronal marker ß-III tubulin. Results: Formulations containing the concentrations 0.16% or 0.32% of cross-linked sodium hyaluronate, taurine, vitamin B6 and vitamin B12 accelerated corneal wound healing. Cells exposed to H2O2 led to significant (p < 0.05) increase of reactive oxygen species concentration that was significantly (p < 0.05) counteract by formulations containing cross-linked sodium hyaluronate (0.32%) and taurine with or without vitamins. The extent of re-innervation, in terms of ß-III tubulin staining, was 5-fold greater (p < 0.01) in the eye of rabbits treated with formulation containing 0.32% cross-linked sodium hyaluronate, taurine, vitamins (RenerviX®) compared with the control group (no treatment). Furthermore, re-innervation elicited by RenerviX® was significantly greater (p < 0.01) compared with the group treated with the formulation containing 0.32% cross-linked sodium hyaluronate and taurine without vitamins, and with the group treated with the formulation containing 0.5% linear sodium hyaluronate (SH), taurine, and vitamin B12, respectively. Discussion: In conclusion, among the formulations tested, the new ophthalmic gel RenerviX® was able to contrast oxidative stress, to accelerate corneal re-epithelization and to promote nerve regeneration.
RESUMEN
Glioblastoma multiforme (GBM) is a brain cancer with a poor prognosis that affects adults. This is a solid tumor characterized by a high rate of cell migration and invasion. The uncontrolled cell proliferation creates hypoxic niches in the tumor mass, which leads to the overexpression of hypoxiainducible factors (HIFs). This induces the activation of the vascular endothelial growth factor (VEGF), which is responsible for uncontrolled neoangiogenesis. Recent studies have demonstrated the antiinvasive effect of pituitary adenylate cyclaseactivating peptide (PACAP) in GBM. PACAP effects on the central nervous system are also mediated through the activitydependent neuroprotective protein (ADNP) activation. To date, no evidence exists regarding its role in GBM. Therefore, the ADNP involvement in GBM was investigated. By analyzing ADNP expression in a human GBM sample through confocal microscopy, a high ADNP immunoreactivity was detected in most glial cells and its predominant expression in hypoxic areas overexpressing HIF1α was highlighted. To investigate the role of ADNP on the HIFVEGF axis in GBM, a human U87MG GBM cell line was cultured with a hypoxic mimetic agent, deferoxamine, and cells were treated with the smallest active fragment of ADNP, known as NAP. The protein expression and distribution of HIF1α and VEGF was detected using western blot analysis and immunofluorescence assay. Results demonstrated that ADNP modulates the hypoxicangiogenic pathway in GBM cells by reducing VEGF secretion, detected through ELISA assay, as well as modulating their migration, assessed through wound healing assay. Although deeper investigation is necessary, the present study suggested that ADNP could be involved in PACAP antiinvasive effects in GBM.
Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Hipoxia , Proteínas del Tejido Nervioso , Proteínas de HomeodominioRESUMEN
Carnosol is a natural compound with antioxidant properties. Based on this evidence, in the present study we investigated whether this compound can protect retinal vascular endothelium from hyperglycemic insult responsible for diabetic retinopathy development. We performed in vitro study on human retinal endothelial cells (HREC) cultured both in normal and high glucose conditions to assess the effects of carnosol on cell viability, Nrf2 expression, HO-1 activity, and ERK1/2 expression. HREC exposed to high glucose insult were treated with carnosol. Data indicated that carnosol treatment is able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by high glucose. Further, carnosol activation of Nrf2/HO-1 signaling axis involves ERK1/2 pathway. These data confirm the therapeutic value of carnosol by suggesting its use to treat diabetic retinopathy.
RESUMEN
The corneal epithelium, the outermost layer of the cornea, acts as a dynamic barrier preventing access to harmful agents into the intraocular space. It is subjected daily to different insults, and ultraviolet B (UV-B) irradiation represents one of the main causes of injury. In our previous study, we demonstrated the beneficial effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against UV-B radiation damage in the human corneal endothelium. Some of its effects are mediated through the activation of the intracellular factor, known as the activity-dependent protein (ADNP). In the present paper, we have investigated the role of ADNP and the small peptide derived from ADNP, known as NAP, in the corneal epithelium. Here, we have demonstrated, for the first time, ADNP expression in human and rabbit corneal epithelium as well as its protective effect by treating the corneal epithelial cells exposed to UV-B radiations with NAP. Our results showed that NAP treatment prevents ROS formation by reducing UV-B-irradiation-induced apoptotic cell death and JNK signalling pathway activation. Further investigations are needed to deeply investigate the possible therapeutic use of NAP to counteract corneal UV-B damage.
RESUMEN
This study aimed to investigate the interactions between fingolimod, a sphingosine 1-phosphate receptor (S1PR) agonist, and melanocortin receptors 1 and 5 (MCR1, MCR5). In particular, we investigated the effects of fingolimod, a drug approved to treat relapsing-remitting multiple sclerosis, on retinal angiogenesis in a mouse model of diabetic retinopathy (DR). We showed, by a molecular modeling approach, that fingolimod can bind with good-predicted affinity to MC1R and MC5R. Thereafter, we investigated the fingolimod actions on retinal MC1Rs/MC5Rs in C57BL/6J mice. Diabetes was induced in C57BL/6J mice through streptozotocin injection. Diabetic and control C57BL/6J mice received fingolimod, by oral route, for 12 weeks and a monthly intravitreally injection of MC1R antagonist (AGRP), MC5R antagonist (PG20N), and the selective S1PR1 antagonist (Ex 26). Diabetic animals treated with fingolimod showed a decrease of retinal vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2), compared to diabetic control group. Fingolimod co-treatment with MC1R and MC5R selective antagonists significantly (p < 0.05) increased retinal VEGFR1, VEGFR2, and VEGFA levels compared to mice treated with fingolimod alone. Diabetic animals treated with fingolimod plus Ex 26 (S1PR1 selective blocker) had VEGFR1, VEGFR2, and VEGFA levels between diabetic mice group and the group of diabetic mice treated with fingolimod alone. This vascular protective effect of fingolimod, through activation of MC1R and MC5R, was evidenced also by fluorescein angiography in mice. Finally, molecular dynamic simulations showed a strong similarity between fingolimod and the MC1R agonist BMS-470539. In conclusion, the anti-angiogenic activity exerted by fingolimod in DR seems to be mediated not only through S1P1R, but also by melanocortin receptors.
RESUMEN
Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts different effects in various human cancer. In glioblastoma (GBM), PACAP has been shown to interfere with the hypoxic micro-environment through the modulation of hypoxia-inducible factors via PI3K/AKT and MAPK/ERK pathways inhibition. Considering that hypoxic tumor micro-environment is strictly linked to angiogenesis and Epithelial-Mesenchymal transition (EMT), in the present study, we have investigated the ability of PACAP to regulate these events. Results have demonstrated that PACAP and its related receptor, PAC1R, are expressed in hypoxic area of human GBM colocalizing either in epithelial or mesenchymal cells. By using an in vitro model of GBM cells, we have observed that PACAP interferes with hypoxic/angiogenic pathway by reducing vascular-endothelial growth factor (VEGF) release and inhibiting formation of vessel-like structures in H5V endothelial cells cultured with GBM-conditioned medium. Moreover, PACAP treatment decreased the expression of mesenchymal markers such as vimentin, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) as well as CD44 in GBM cells by affecting their invasiveness. In conclusion, our study provides new insights regarding the multimodal role of PACAP in GBM malignancy.
RESUMEN
This study aimed to investigate the high glucose damage on human retinal pigment epithelial (RPE) cells, the role of p38 MAPK signaling pathway and how dimethyl fumarate can regulate that. We carried out in vitro studies on ARPE-19 cells exposed to physiological and high glucose (HG) conditions, to evaluate the effects of DMF on cell viability, apoptosis, and expression of inflammatory and angiogenic biomarkers such as COX-2, iNOS, IL-1ß, and VEGF. Our data have demonstrated that DMF treatment attenuated HG-induced apoptosis, as confirmed by reduction of BAX/Bcl-2 ratio. Furthermore, in RPE cells exposed to HG we observed a significant increase of iNOS, COX-2, and IL-1ß expression, that was reverted by DMF treatment. Moreover, DMF reduced the VEGF levels elicited by HG, inhibiting p38 MAPK signaling pathway. The present study demonstrated that DMF provides a remarkable protection against high glucose-induced damage in RPE cells through p38 MAPK inhibition and the subsequent down-regulation of VEGF levels, suggesting that DMF is a small molecule that represents a good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation.
RESUMEN
OBJECTIVE AND DESIGN: Celiac disease (CD) is an intestinal inflammatory disorder of the small intestine. Gliadins are a component of gluten and there are three main types (α, γ, and ω). Recent studies indicate that gliadin peptides are able to activate an innate immune response. IL15 is a major mediator of the innate immune response and is involved in the early alteration of CD mucosa. The chitinase molecules are highly expressed by the innate immune cells during the inflammatory processes. MATERIAL OR SUBJECTS: We analyzed several microarray datasets of PBMCs and duodenum biopsies of CD patients and healthy control subjects (HCs). We verified the modulation CHI3L1 in CD patients and correlated the expression levels to the IL15, IL15Rα, TGM2, IFNγ, and IFNGR1/2. Duodenal biopsy samples belonged to nine active and nine treated children patients (long-term effects of gliadin), and 17 adult CD patients and 10 adults HCs. We also selected 169 samples of PBMCs from 127 CD patients on adherence to a gluten-free diet (GFD) for at least 2 years and 44 HCs. RESULTS: Our analysis showed that CHI3L1 and IL15Rα were significantly upregulated in adult and children's celiac duodenum biopsies. In addition, the two genes were correlated significantly both in children than in adults CD duodenum biopsies. No significant modulation was observed in PBMCs of adult CD patients compared to the HCs. The correlation analysis of the expression levels of CHI3L1 and IL15Rα compared to TGM showed significant values both in adults and in children duodenal biopsies. Furthermore, the IFNγ expression levels were positively correlated with CHI3L1 and IL15Rα. Receiver operating characteristic (ROC) analysis confirmed the diagnostic ability of CHI3L1 and IL15Rα to discriminate CD from HCs. CONCLUSION: Our data suggest a role for CHI3L1 underlying the pathophysiology of CD and represent a starting point aiming to inspire new investigation that proves the possible use of CHI3L1 as a diagnostic factor and therapeutic target.
Asunto(s)
Enfermedad Celíaca/inmunología , Proteína 1 Similar a Quitinasa-3/fisiología , Duodeno/inmunología , Proteínas de Unión al GTP/fisiología , Subunidad alfa del Receptor de Interleucina-15/fisiología , Transglutaminasas/fisiología , Adulto , Biopsia , Enfermedad Celíaca/etiología , Niño , Proteína 1 Similar a Quitinasa-3/análisis , Proteína 1 Similar a Quitinasa-3/genética , Duodeno/enzimología , Duodeno/patología , Humanos , Subunidad alfa del Receptor de Interleucina-15/análisis , Subunidad alfa del Receptor de Interleucina-15/genética , Proteína Glutamina Gamma Glutamiltransferasa 2RESUMEN
Deletion of dystrobrevin binding protein 1 has been linked to Hermansky-Pudlak syndrome type 7 (HPS-7), a rare disease characterized by oculocutaneous albinism and retinal dysfunction. We studied dysbindin-1 null mutant mice (Dys-/-) to shed light on retinal neurodevelopment defects in HPS-7. We analyzed the expression of a focused set of miRNAs in retina of wild type (WT), Dys+/- and Dys-/- mice. We also investigated the retinal function of these mice through electroretinography (ERG). We found that miR-101-3p, miR-137, miR-186-5p, miR-326, miR-382-5p and miR-876-5p were up-regulated in Dys-/-mice retina. Dys-/- mice showed significant increased b-wave in ERG, compared to WT mice. Bioinformatic analysis highlighted that dysregulated miRNAs target synaptic plasticity and dopaminergic signaling pathways, affecting retinal functions of Dys-/- mice. Overall, the data indicate potential mechanisms in retinal neurodevelopment of Dys-/- mice, which may have translational significance in HSP-7 patients, both in terms of diagnostic/prognostic biomarkers and novel pharmacological targets.
Asunto(s)
Síndrome de Hermanski-Pudlak/tratamiento farmacológico , Síndrome de Hermanski-Pudlak/metabolismo , MicroARNs/metabolismo , Terapia Molecular Dirigida , Retina/efectos de los fármacos , Retina/metabolismo , Animales , Biología Computacional , Regulación de la Expresión Génica/efectos de los fármacos , Síndrome de Hermanski-Pudlak/diagnóstico , Síndrome de Hermanski-Pudlak/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/sangre , MicroARNs/genética , PronósticoRESUMEN
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. The clinical course may range from spontaneous regression towards ganglioneuroblastoma/ganglioneuroma or maturation to a very aggressive form characterized by an extensive hypoxic area. In solid tumors, extracellular microenvironment hypoxia induces the transcription of hypoxia-inducible factors (HIFs) leading to synthesis of pro-angiogenic factor, VEGF; also, it increases extracellular adenosine production from ATP breakdown. To date, the role of this nucleoside in the hypoxic/angiogenic pathway characterizing the core of cancer mass has not been investigated yet. Therefore, the aim of the present study was to analyze the adenosine effect on modulation of the HIF-1α/2α/VEGF pathway mediated through A3 AR binding. To this end, we have used a selective A3 AR agonist IB-MECA or antagonist VUF 5574 in an in vitro model of malignant undifferentiated and all-trans retinoic acid (RA)-differentiated SH-SY5Y cells, representing the benign form of NB. Our results have shown that specific A3 AR stimulation induces HIF and VEGF expression through the activation of mitogen-activated protein kinase/Erk kinase signaling cascade. In conclusion, the data suggest that A3 AR may represent a marker of NB malignancy as well as a drug target for treatment of this solid tumor. Graphical Abstract.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuroblastoma/metabolismo , Receptor de Adenosina A3/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacología , Agonistas del Receptor de Adenosina A3/farmacología , Antagonistas del Receptor de Adenosina A3/farmacología , Hipoxia de la Célula , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP QuinasasRESUMEN
Failure of anti-amyloid-ß peptide (Aß) therapies against Alzheimer's disease (AD), a neurodegenerative disorder characterized by high amounts of the peptide in the brain, raised the question of the physiological role of Aß released at low concentrations in the healthy brain. To address this question, we studied the presynaptic and postsynaptic mechanisms underlying the neuromodulatory action of picomolar amounts of oligomeric Aß42 (oAß42) on synaptic glutamatergic function in male and female mice. We found that 200 pm oAß42 induces an increase of frequency of miniature EPSCs and a decrease of paired pulse facilitation, associated with an increase in docked vesicle number, indicating that it augments neurotransmitter release at presynaptic level. oAß42 also produced postsynaptic changes as shown by an increased length of postsynaptic density, accompanied by an increased expression of plasticity-related proteins such as cAMP-responsive element binding protein phosphorylated at Ser133, calcium-calmodulin-dependent kinase II phosphorylated at Thr286, and brain-derived neurotrophic factor, suggesting a role for Aß in synaptic tagging. These changes resulted in the conversion of early into late long-term potentiation through the nitric oxide/cGMP/protein kinase G intracellular cascade consistent with a cGMP-dependent switch from short- to long-term memory observed in vivo after intrahippocampal administration of picomolar amounts of oAß42 These effects were present upon extracellular but not intracellular application of the peptide and involved α7 nicotinic acetylcholine receptors. These observations clarified the physiological role of oAß42 in synaptic function and memory formation providing solid fundamentals for investigating the pathological effects of high Aß levels in the AD brains.SIGNIFICANCE STATEMENT High levels of oligomeric amyloid-ß42 (oAß42) induce synaptic dysfunction leading to memory impairment in Alzheimer's disease (AD). However, at picomolar concentrations, the peptide is needed to ensure long-term potentiation (LTP) and memory. Here, we show that extracellular 200 pm oAß42 concentrations increase neurotransmitter release, number of docked vesicles, postsynaptic density length, and expression of plasticity-related proteins leading to the conversion of early LTP into late LTP and of short-term memory into long-term memory. These effects require α7 nicotinic acetylcholine receptors and are mediated through the nitric oxide/cGMP/protein kinase G pathway. The knowledge of Aß function in the healthy brain might be useful to understand the causes leading to its increase and detrimental effect in AD.
Asunto(s)
Péptidos beta-Amiloides/administración & dosificación , Líquido Extracelular/fisiología , Memoria/fisiología , Neurotransmisores/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Animales , Líquido Extracelular/efectos de los fármacos , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Inyecciones Intraventriculares , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiologíaRESUMEN
To study the effects of curcumin on human retinal pigment epithelial (RPE) cells exposed to high glucose (HG) insult, we performed in vitro studies on RPE cells cultured both in normal and HG conditions to assess the effects of curcumin on the cell viability, nuclear factor erythroid 2-related factor 2 (Nrf2) expression, HO-1 activity, and ERK1/2 expression. RPE cells exposed to HG insult were treated with curcumin. The cell viability, apoptosis, HO-1 activity, ERK, and Nrf2 expression were evaluated. The data indicated that treatment with curcumin caused a significant decrease in terms of apoptosis. Further, curcumin was able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by HG. The present study demonstrated that curcumin provides protection against HG-induced damage in RPE cells through the activation of Nrf2/HO-1 signaling that involves the ERK pathway, suggesting that curcumin may have therapeutic value in the treatment of diabetic retinopathy.
Asunto(s)
Curcumina/farmacología , Células Epiteliales/efectos de los fármacos , Glucosa/farmacología , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
In our previous work we have shown that L-Tryptophan (TrP) enriched diet prevents the age-induced decline of hippocampal Serotonin (5-HT) production. Considering that loss or reduction in 5-HT neurotransmission may contribute to age-related cognitive decline, here we have investigated the effect of such diet on passive avoidance (PA) behavior, cell death, pro- and anti- apoptotic molecules (BAX, Bcl-2 and Caspase-3) and an important transcription factor involved in synaptic plasticity and memory (CREB). The increase in 5-HT neurotransmission in the Hippocampus (Hp) of aged rats was induced by 1 month of high TrP administration. In the first phase of our study we found that high TrP diet improves PA behaviour of aged rats and this correlated with a decrease of TUNEL positive cells in all hippocampal regions tested (CA1, CA2, CA3, DG). Interestingly, the Hp of aged animals fed with high TrP diet showed a significant downregulation of proapoptotic proteins, caspase-3 and BAX, and an increase of antiapoptotic molecules Bcl-2 as indicated by Western Blot and immunohistochemical analyses. Also, high TrP diet partially rescued the age-induced inhibition of hippocampal CREB phosphorylation. Altogether, our data suggest that enhanced TrP intake, and in consequence a potential increase in 5-HT neurotransmission, might be beneficial in preventing age-related detrimental features by inhibition of hippocampal apoptosis.
Asunto(s)
Envejecimiento/patología , Envejecimiento/psicología , Apoptosis , Reacción de Prevención , Hipocampo/patología , Triptófano/administración & dosificación , Envejecimiento/metabolismo , Alimentación Animal , Animales , Apoptosis/fisiología , Reacción de Prevención/fisiología , Caspasa 3/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Suplementos Dietéticos , Hipocampo/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Serotonina/metabolismo , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Angiogenesis plays a crucial role in progression of pleural malignant mesothelioma. A significantly increased incidence of pleural mesothelioma has been attributed to exposure to fluoro-edenite, a fibrous amphibole extracted from a local stone quarry. In this study, we have investigated the expression of CD68-positive macrophages, tryptase-positive mast cells and CD31 positive areas, as expression of microvascular density, in lung tissue of sheeps exposed to fluoro-edenite fibers vs controls, by immunohistochemical, morphometric and Western blot analysis. The result have evidenced a significant increase in the expression of CD68-positive macrophages, tryptase-positive mast cells as well as a significant increase in microvascular density evaluated as CD31 positive areas in lung tissue of of sheeps exposed to fluoro-edenite fibers vs controls. These data confirmed the important role played by tumor microenvironment components, including macrophages and mast cells, in favour of angiogenesis in pleural mesothelioma induced by fluoro-edenite exposure.