RESUMEN
R-roscovitine (seliciclib, CYC202) is a cyclin-dependent kinase inhibitor currently in phase II clinical trials in patients with cancer. Here, we describe its mouse metabolism and pharmacokinetics as well as the identification of the principal metabolites in hepatic microsomes, plasma, and urine. Following microsomal incubation of R-roscovitine at 10 microg/mL (28 micromol/L) for 60 minutes, 86.7% of the parent drug was metabolized and 60% of this loss was due to formation of one particular metabolite. This was identified as the carboxylic acid resulting from oxidation of the hydroxymethyl group of the amino alcohol substituent at C2 of the purine core present in R-roscovitine. Identification was confirmed by chemical synthesis and comparison of an authentic sample of the R-roscovitine-derived carboxylate metabolite (COOH-R-roscovitine). Other minor metabolites were identified as C8-oxo-R-roscovitine and N9-desisopropyl-R-roscovitine; these accounted for 4.9% and 2.6% of the parent, respectively. The same metabolic pattern was observed in vivo, with a 4.5-fold lower AUC(infinity) for R-roscovitine (38 micromol/L/h) than for COOH-R-roscovitine (174 micromol/L/h). Excretion of R-roscovitine in the urine up to 24 hours post-dosing accounted for an average of only 0.02% of the administered dose of 50 mg/kg, whereas COOH-R-roscovitine represented 65% to 68% of the dose irrespective of the route of administration (i.v., i.p., or p.o.). A partially deuterated derivative (R-roscovitine-d9) was synthesized to investigate if formation of COOH-R-roscovitine could be inhibited by replacement of metabolically labile protons with deuterium. After 60 minutes of incubation of R-roscovitine-d9 or R-roscovitine with mouse liver microsomes, formation of COOH-R-roscovitine-d9 was decreased by approximately 24% compared with the production of COOH-R-roscovitine. In addition, the levels of R-roscovitine-d9 remaining were 33% higher than those of R-roscovitine. However, formation of several minor R-roscovitine metabolites was enhanced with R-roscovitine-d9, suggesting that metabolic switching from the major carbinol oxidation pathway had occurred. Synthetic COOH-R-roscovitine and C8-oxo-R-roscovitine were tested in functional cyclin-dependent kinase assays and shown to be less active than R-roscovitine, confirming that these metabolic reactions are deactivation pathways.
Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Purinas/farmacocinética , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Biotransformación , Espectrometría de Masas , Ratones , Microsomas Hepáticos/metabolismo , Purinas/química , Roscovitina , Distribución TisularRESUMEN
Determination of pharmacokinetic properties in the intact animal remains a major bottleneck in drug discovery. Cassette dosing involves administration of a cocktail of drugs to individual animals. Here we describe the cassette dosing properties of a 107-membered library of 2,6,9-trisubstituted purine cyclin-dependent kinase 2 (CDK2) inhibitors. A three-step parallel synthesis approach produced compounds with purity ranging from 63% to 100%. Cassette dosing was validated by comparing the pharmacokinetic parameters obtained following i.v. administration of a mixture of olomoucine, R-roscovitine (CYC202), and bohemine, each at 16.6 mg/kg, with results for administration of single agents at 50 mg/kg. No significant difference was observed between the pharmacokinetic parameters of agents when dosed in combination compared with those of individual compounds. CYC202 showed the highest area under the curve (AUC) and the longest elimination half-life (t(1/2)). Further cassettes evaluated the library of trisubstituted purines with CYC202 and purvalanol A included as pharmacokinetic standards in a validated limited sampling strategy. The ratios of pharmacokinetic parameters to that of CYC202 [AUC, maximum concentration (C(max)), and t(1/2)] remained similar when compounds were tested in two different cassettes or as individual compounds. Following dosing of the same cassette on three different days, there was less than 20% variation in pharmacokinetic parameters between days. The structure-pharmacokinetics relationship showed that the favored purine substituents are benzylamine and veratrylamine at position 6, amino-2 propanol at position 2, and methylpropyl or hydroxyethyl at position 9. Without cassette dosing, this study would have used 3 times as many animals and would have taken 4 times longer, illustrating the power of this method in lead optimization.