Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Disabil Rehabil ; : 1-7, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700257

RESUMEN

PURPOSE: To cross-culturally adapt the Patient-Specific Functional Scale (PSFS) into Italian and study its classic psychometric properties in subjects with shoulder pain (SP). MATERIALS AND METHODS: The PSFS was translated into Italian and administered to 109 SP subjects. Acceptability (time to administer, floor and ceiling effects), reliability (internal consistency [Cronbach's alpha], test-retest reliability [Intraclass Correlation Coefficient (ICC)], and measurement error [Standard Error of Measurement (SEM), Minimal Detectable Change, (MDC)]), were assessed. Moreover, construct validity was investigated through a-priori hypothesis testing, comparing the PSFS with the Disability of the Shoulder, Arm and Hand (DASH) scale, 36-item Short Form Health Survey (SF-36) and Numeric Pain Rating scale (NPRS). RESULTS: The PSFS was successfully adapted into Italian, and its acceptability was satisfied. Internal consistency was high (Cronbach's alpha = 0.925), and test-retest reliability was good (ICC = 0.866, 95% CI = 0.749-0.931). A SEM of 0.7 points and an MDC of 1.9 points were obtained. We observed moderate evidence for construct validity, with 4/6 correlations between other measures being respected. CONCLUSION: This study provided reliability and validity of the PSFS in a sample of Italian SP subjects. Future studies should assess the responsiveness of using the PSFS as an outcome measure to capture clinical changes after treatment.


The Patient-Specific Functional Scale is a reliable, and easy-to-use patient-reported outcome measure.The Patient-Specific Functional Scale was cross-cultural validated in the Italian language.The Patient-Specific Functional Scale has excellent internal consistency, high reliability, low measurement error, and moderate construct validity in subjects with shoulder pain.The Patient-Specific Functional Scale can be used in clinical practice by Italian physiotherapists to assess subjects with shoulder pain.

2.
J Pers Med ; 13(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138919

RESUMEN

Stroke, a leading cause of long-term disability worldwide, manifests as motor, speech language, and cognitive impairments, necessitating customized rehabilitation strategies. In this context, telerehabilitation (TR) strategies have emerged as promising solutions. In a multi-center longitudinal pilot study, we explored the effects of a multi-domain TR program, comprising physiotherapy, speech therapy, and neuropsychological treatments. In total, 84 stroke survivors (74 analyzed) received 20 tailored sessions per domain, addressing individual impairments and customized to their specific needs. Positive correlations were found between initial motor function, cognitive status, independence in activities of daily living (ADLs), and motor function improvement after TR. A lower initial health-related quality of life (HRQoL) perception hindered progress, but improved ADL independence and overall health status, and reduced depression correlated with a better QoL. Furthermore, post-treatment improvements were observed in the entire sample in terms of fine motor skills, upper-limb functionality, balance, independence, and cognitive impairment. This multi-modal approach shows promise in enhancing stroke rehabilitation and highlights the potential of TR in addressing the complex needs of stroke survivors through a comprehensive support and interdisciplinary collaboration, personalized for each individual's needs.

3.
Eur J Phys Rehabil Med ; 59(6): 689-696, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847247

RESUMEN

BACKGROUND: The implementation of regular prolonged, and effective rehabilitation in people with Parkinson's disease is essential for ensuring a good quality of life. However, the continuity of rehabilitation care may find barriers related to economic, geographic, and social issues. In these scenarios, telerehabilitation could be a possible solution to guarantee the continuity of care. AIM: To investigate the efficacy of non-immersive virtual reality-based telerehabilitation on postural stability in people with Parkinson's disease, compared to at-home self-administered structured conventional motor activities. DESIGN: Multicenter randomized controlled trial. SETTING: Five rehabilitation hospitals of the Italian Neuroscience and Rehabilitation Network. POPULATION: Individuals diagnosed with Parkinson's disease. METHODS: Ninety-seven participants were randomized into two groups: 49 in the telerehabilitation group (non-immersive virtual reality-based telerehabilitation) and 48 in the control group (at-home self-administered structured conventional motor activities). Both treatments lasted 30 sessions (3-5 days/week for, 6-10 weeks). Static and dynamic balance, gait, and functional motor outcomes were registered before and after the treatments. RESULTS: All participants improved the outcomes at the end of the treatments. The primary outcome (mini-Balance Evaluation Systems Test) registered a greater significant improvement in the telerehabilitation group than in the control group. The gait and endurance significantly improved in the telerehabilitation group only, with significant within-group and between-group differences. CONCLUSIONS: Our results showed that non-immersive virtual reality-based telerehabilitation is feasible, improves static and dynamic balance, and is a reasonably valuable alternative for reducing postural instability in people with Parkinson's disease. CLINICAL REHABILITATION IMPACT: Non-immersive virtual reality-based telerehabilitation is an effective and well-tolerated modality of rehabilitation which may help to improve access and scale up rehabilitation services as suggested by the World Health Organization's Rehabilitation 2030 agenda.


Asunto(s)
Enfermedad de Parkinson , Telerrehabilitación , Realidad Virtual , Humanos , Telerrehabilitación/métodos , Enfermedad de Parkinson/rehabilitación , Calidad de Vida , Modalidades de Fisioterapia , Equilibrio Postural
4.
Int J Rehabil Res ; 46(3): 230-237, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334818

RESUMEN

The modified Barthel Index (mBI) is a well-established patient-centered outcome measure commonly administrated in rehabilitation settings to evaluate the functional status of patients at admission and discharge. This study aimed to detect which mBI items collected on admission can predict the total mBI at discharge from first inpatient rehabilitation in large cohorts of orthopedic (n = 1864) and neurological (n = 1684) patients. Demographic and clinical data (time since the acute event 11.8 ±â€…17.2 days) at patients' admission and mBI at discharge were collected. Univariate and multiple binary logistic regressions were performed to study the associations between independent and dependent variables for each cohort separately. In neurological patients, the shorter time between the acute event and rehabilitation admission, shorter length of stay, and being independent with feeding, personal hygiene, bladder, and transfers were independently associated with higher total mBI at discharge (R 2  = 0.636). In orthopedic patients, age, the shorter time between the acute event and rehabilitation admission, shorter length of stay, and being independent with personal hygiene, dressing, and bladder were independently associated with higher total mBI at discharge (R 2  = 0.622). Our results showed that different activities in neurological (i.e. feeding, personal hygiene, bladder, and transfer) and orthopedic sample (i.e. personal hygiene, dressing, and bladder) are positively associated with better function (measured by mBI) at the discharge. Clinicians have to take into account these predictors of functionality when they plan an appropriate rehabilitation treatment.


Asunto(s)
Estado Funcional , Alta del Paciente , Humanos , Estudios Retrospectivos , Pacientes Internos , Hospitalización , Tiempo de Internación , Resultado del Tratamiento , Recuperación de la Función
5.
Brain Sci ; 13(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37190665

RESUMEN

BACKGROUND: The efficacy of upper limb (UL) robot-assisted therapy (RAT) on functional improvement after stroke remains unclear. However, recently published randomized controlled trials have supported its potential benefits in enhancing the activities of daily living, arm and hand function, and muscle strength. Task-specific and high-intensity exercises are key points in facilitating motor re-learning in neurorehabilitation since RAT can provide an assisted-as-needed approach. This study aims to investigate the clinical effects of an exoskeleton robotic system for UL rehabilitation compared with conventional therapy (CT) in people with subacute stroke. As a secondary aim, we seek to identify patients' characteristics, which can predict better recovery after UL-RAT and detects whether it could elicit greater brain stimulation. METHODS: A total of 84 subacute stroke patients will be recruited from 7 Italian rehabilitation centers over 3 years. The patients will be randomly allocated to either CT (control group, CG) or CT plus UL-RT through an Armeo®Power (Hocoma AG, CH, Volketswil, Switzerland) exoskeleton (experimental group, EG). A sample stratification based on distance since onset, DSO (DSO ≤ 30; DSO > 30), and Fugl-Meyer Assessment (FM)-UL (FM-UL ≤ 22; 22 < FM-UL ≤ 44) will be considered for the randomization. The outcomes will be recorded at baseline (T0), after 25 + 3 sessions of intervention (T1), and at 6 months post-stroke (T2). The motor functioning assessed by the FM-UL (0-66) will be considered the primary outcome. The clinical assessments will be set based on the International Classification of Function, Disability and Health (ICF). A patient satisfaction questionnaire will be evaluated in the EG at T1. A subgroup of patients will be evaluated at T0 and T1 via electroencephalography. Their brain electrical activity will be recorded during rest conditions with their eyes closed and open (5 min each). CONCLUSION: The results of this trial will provide an in-depth understanding of the efficacy of early UL-RAT through a whole arm exoskeleton and how it may relate to the neural plasticity process. The trial was registered at ClinicalTrial.gov with the registration identifier NCT04697368.

6.
J Clin Med ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176618

RESUMEN

BACKGROUND: People with chronic neurological diseases, such as Parkinson's Disease (PD) and Multiple Sclerosis (MS), often present postural disorders and a high risk of falling. When difficulties in achieving outpatient rehabilitation services occur, a solution to guarantee the continuity of care may be telerehabilitation. This study intends to expand the scope of our previously published research on the impact of telerehabilitation on quality of life in an MS sample, testing the impact of this type of intervention in a larger sample of neurological patients also including PD individuals on postural balance. METHODS: We included 60 participants with MS and 72 with PD. All enrolled subjects were randomized into two groups: 65 in the intervention group and 67 in the control group. Both treatments lasted 30-40 sessions (5 days/week, 6-8 weeks). Motor, cognitive, and participation outcomes were registered before and after the treatments. RESULTS: All participants improved the outcomes at the end of the treatments. The study's primary outcome (Mini-BESTest) registered a greater significant improvement in the telerehabilitation group than in the control group. CONCLUSIONS: Our results demonstrated that non-immersive virtual reality telerehabilitation is well tolerated and positively affects static and dynamic balance and gait in people with PD and MS.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37107856

RESUMEN

Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Algoritmos , Pacientes , Actividades Cotidianas
8.
JMIR Res Protoc ; 12: e42094, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37079364

RESUMEN

BACKGROUND: In the last few years, new noninvasive strategies have emerged as rehabilitative treatments for patients with stroke. Action observation treatment (AOT) is a rehabilitation approach based on the properties of the mirror neuron system with a positive impact on modifying cortical activation patterns and improving the upper limb kinematics. AOT involves the dynamic process of observing purposeful actions with the intention of imitating and then practicing those actions. In recent years, several clinical studies suggested the effectiveness of AOT in patients with stroke to improve motor recovery and autonomy in activities of daily living. However, a deeper knowledge of the behavior of the sensorimotor cortex during AOT seems to be essential. OBJECTIVE: The aim of this clinical trial, conducted in 2 neurorehabilitation centers and in patients' homes, is to investigate the effectiveness of AOT in patients with stroke, confirming the translational power of a tailored treatment. Particular emphasis will be placed on the predictive value of neurophysiological biomarkers. In addition, the feasibility and impact of a home-based AOT program will be investigated. METHODS: A 3-arm, assessor-blinded, randomized controlled trial will be performed by enrolling patients with stroke in the chronic stage. A total of 60 participants will be randomly allocated to receive 15 sessions of AOT with different protocols (AOT at the hospital, AOT at home, and sham AOT), 3 sessions per week. The primary outcome will be assessed using the Fugl-Meyer Assessment-Upper Extremity scores. Secondary outcomes will be clinical, biomechanical, and neurophysiological assessment. RESULTS: The study protocol is part of a project (project code GR-2016-02361678) approved and funded by the Italian Ministry of Health. The study began with the recruitment phase in January 2022, and enrollment was expected to end in October 2022. Recruitment is now closed (December 2022). The results of this study are expected to be published in spring 2023. Upon completion of the analyses, we will examine the preliminary effectiveness of the intervention and neurophysiological outcomes. CONCLUSIONS: This study will be used to evaluate the effectiveness of 2 different AOT scenarios (ie, AOT at the hospital and AOT at home) in patients with chronic stroke and to assess the predictive value of neurophysiological biomarkers. Specifically, we will attempt to induce the functional modification of the cortical components by exploiting the features of the mirror neuron system, demonstrating relevant clinical, kinematic, and neurophysiological changes after AOT. With our study, we also want to provide, for the first time in Italy, the AOT home-based program while assessing its feasibility and impact. TRIAL REGISTRATION: ClinicalTrials.gov NCT04047134; https://clinicaltrials.gov/ct2/show/NCT04047134. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/42094.

9.
BMC Musculoskelet Disord ; 24(1): 212, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949437

RESUMEN

BACKGROUND: The Shoulder and Pain Disability Index (SPADI) is a widely used outcome measure. The aim of this study is to explore the reliability and validity of SPADI in a sample of patients with idiopathic frozen shoulder. METHODS: The SPADI was administered to 124 patients with idiopathic frozen shoulder. A sub-group of 29 patients were retested after 7 days. SPADI scores were correlated with other outcome measures (i.e., Disabilities of the Arm, Shoulder and Hand Questionnaire - DASH; Numerical Pain Rating Scale-NPRS; and 36-item Short Form Health Survey-SF-36) to examine construct validity. Structural validity was assessed by a Two-Factors Confirmatory Factor Analysis (CFA). Internal consistency, test-retest reliability, and measurement error were also analyzed. RESULTS: The construct validity was satisfactory as seven out of eight of the expected correlations formulated (≥ 75%) for the subscales were satisfied. The CFA showed good values of all indicators for both Pain and Disability subscales (Comparative Fit Index = 0.999; Tucker-Lewis Index = 0.997; Root Mean Square Error of Approximation = 0.030). Internal consistency was good for pain (α = 0.859) and disability (α = 0.895) subscales. High test-retest reliability (Intraclass correlation coefficient [ICC]) was found for pain (ICC = 0.989 [95% Confidence Interval (CI = 0.975-0.995]) and disability (ICC = 0.990 [95% CI = 0.988-0.998]). Standard Error of Measurement values of 2.27 and 2.32 and Minimal Detectable Change values of 6.27 and 6.25 were calculated for pain and disability subscales, respectively. CONCLUSION: The SPADI demonstrated satisfactory reliability and validity properties in a sample of patients with idiopathic frozen shoulder.


Asunto(s)
Bursitis , Dolor de Hombro , Humanos , Dolor de Hombro/diagnóstico , Reproducibilidad de los Resultados , Evaluación de la Discapacidad , Hombro , Encuestas y Cuestionarios , Bursitis/diagnóstico , Psicometría
10.
J Clin Med ; 12(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902713

RESUMEN

Idiopathic chronic neck pain is a highly disabling musculoskeletal condition. Immersive virtual reality shows a promising efficacy in the treatment of chronic cervical pain through the mechanism of distraction from the pain. This case report describes the management of C.F., a fifty-seven-year-old woman, who suffered from neck pain for fifteen months. She had already undergone a cycle of physiotherapy treatments including education, manual therapy, and exercises, following international guidelines. The patient's poor compliance did not allow adherence to the exercise's prescription. Home exercise training through virtual reality was therefore proposed to the patient to improve her adherence to the treatment plan. The personalization of the treatment allowed the patient to resolve in a short time period her problem and return to live with her family peacefully.

11.
J Clin Med ; 12(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36675371

RESUMEN

BACKGROUND: Although stroke survivors can benefit from robotic gait rehabilitation, stationary robot-assisted gait training needs further investigation. In this paper, we investigated the efficacy of this approach (with an exoskeleton or an end-effector robot) in comparison to the conventional overground gait training in subacute stroke survivors. METHODS: In a multicenter controlled clinical trial, 89 subacute stroke survivors conducted twenty sessions of robot-assisted gait training (Robotic Group) or overground gait training (Control Group) in addition to the standard daily therapy. The robotic training was performed with an exoskeleton (RobotEXO-group) or an end-effector (RobotEND-group). Clinical outcomes were assessed before (T0) and after (T1) the treatment. The walking speed during the 10-Meter Walk Test (10 MWT) was the primary outcome of this study, and secondary outcomes were the 6-Minute Walk Test (6 MWT), Timed Up and Go test (TUG), and the modified Barthel Index (mBI). RESULTS: The main characteristics assessed in the Robotic and Control groups did not differ at baseline. A significant benefit was detected from the 10 MWT in the Robotic Group at the end of the study period (primary endpoint). A benefit was also observed from the following parameters: 6 MWT, TUG, and mBI. Moreover, patients belonging to the Robot Group outperformed the Control Group in gait speed, endurance, balance, and ADL. The RobotEND-group improved their walking speed more than the RobotEXO-group. CONCLUSION: The stationary robot-assisted training improved walking ability better than the conventional training in subacute stroke survivors. These results suggest that people with subacute stroke may benefit from Robot-Assisted training in potentiating gait speed and endurance. Our results also support that end-effector robots would be superior to exoskeleton robots for improving gait speed enhancement.

12.
Front Bioeng Biotechnol ; 10: 1012544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561043

RESUMEN

Background: The literature on upper limb robot-assisted therapy showed that robot-measured metrics can simultaneously predict registered clinical outcomes. However, only a limited number of studies correlated pre-treatment kinematics with discharge motor recovery. Given the importance of predicting rehabilitation outcomes for optimizing physical therapy, a predictive model for motor recovery that incorporates multidirectional indicators of a patient's upper limb abilities is needed. Objective: The aim of this study was to develop a predictive model for rehabilitation outcome at discharge (i.e., muscle strength assessed by the Motricity Index of the affected upper limb) based on multidirectional 2D robot-measured kinematics. Methods: Re-analysis of data from 66 subjects with subacute stroke who underwent upper limb robot-assisted therapy with an end-effector robot was performed. Two least squares error multiple linear regression models for outcome prediction were developed and differ in terms of validation procedure: the Split Sample Validation (SSV) model and the Leave-One-Out Cross-Validation (LOOCV) model. In both models, the outputs were the discharge Motricity Index of the affected upper limb and its sub-items assessing elbow flexion and shoulder abduction, while the inputs were the admission robot-measured metrics. Results: The extracted robot-measured features explained the 54% and 71% of the variance in clinical scores at discharge in the SSV and LOOCV validation procedures respectively. Normalized errors ranged from 22% to 35% in the SSV models and from 20% to 24% in the LOOCV models. In all models, the movement path error of the trajectories characterized by elbow flexion and shoulder extension was the significant predictor, and all correlations were significant. Conclusion: This study highlights that motor patterns assessed with multidirectional 2D robot-measured metrics are able to predict clinical evalutation of upper limb muscle strength and may be useful for clinicians to assess, manage, and program a more specific and appropriate rehabilitation in subacute stroke patients.

13.
Neurorehabil Neural Repair ; 36(9): 574-586, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36000699

RESUMEN

BACKGROUND: The Action Observation Therapy (AOT) is a well-established post-stroke rehabilitation treatment based on the theoretical framework of the Mirror Neuron System (MNS) activation. However, AOT protocols are still heterogeneous in terms of video contents of observed actions. OBJECTIVE: The aim of this study was to analyze electroencephalographic (EEG) recordings in stroke patients during the observation of different videos of task-specific upper limb movements, and to define which category of actions can elicit a stronger cortical activation in the observer's brain. METHODS: Signals were analyzed from 19 chronic stroke subjects observing customized videos that represented 3 different categories of upper limb actions: Finalized Actions, Non-Finalized Actions, and Control Videos. The Event-Related Desynchronization in the µ and ß bands was chosen to identify the involvement of the cerebral cortex: the area of the normalized power spectral density was calculated for each category and, deepening, for the reaching and completion sub-phases of Finalized Actions. For descriptive purposes, the time course of averaged signal power was described. The Kruskal-Wallis test (P < .05) was applied. RESULTS: The analysis showed a greater desynchronization when subjects observed Finalized Actions with respect to Non-Finalized in all recorded areas; Control videos provoked a synchronization in the same areas and frequency bands. The reaching phase of feeding and self-care actions evoked a greater suppression both in µ and ß bands. CONCLUSIONS: The observation of finalized arm movements seems to elicit the strongest activation of the MNS in chronic stroke patients. This finding may help the clinicians to design future AOT-based stroke rehabilitation protocols. CLINICAL TRIAL REGISTRATION: Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT04047134.


Asunto(s)
Neuronas Espejo , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Electroencefalografía , Humanos , Neuronas Espejo/fisiología , Autocuidado , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos
14.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746315

RESUMEN

(1) Background: In neurorehabilitation, Wearable Powered Exoskeletons (WPEs) enable intensive gait training even in individuals who are unable to maintain an upright position. The importance of WPEs is not only related to their impact on walking recovery, but also to the possibility of using them as assistive technology; however, WPE-assisted community ambulation has rarely been studied in terms of walking performance in real-life scenarios. (2) Methods: This study proposes the integration of an Inertial Measurement Unit (IMU) system to analyze gait kinematics during real-life outdoor scenarios (regular, irregular terrains, and slopes) by comparing the ecological gait (no-WPE condition) and WPE-assisted gait in five able-bodied volunteers. The temporal parameters of gait and joint angles were calculated from data collected by a network of seven IMUs. (3) Results: The results showed that the WPE-assisted gait had less knee flexion in the stance phase and greater hip flexion in the swing phase. The different scenarios did not change the human-exoskeleton interaction: only the low-speed WPE-assisted gait was characterized by a longer double support phase. (4) Conclusions: The proposed IMU-based gait assessment protocol enabled quantification of the human-exoskeleton interaction in terms of gait kinematics and paved the way for the study of WPE-assisted community ambulation in stroke patients.


Asunto(s)
Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha , Fenómenos Biomecánicos , Marcha , Trastornos Neurológicos de la Marcha/rehabilitación , Humanos , Caminata
15.
J Pers Med ; 12(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629250

RESUMEN

BACKGROUND: In 2020, the world was surprised by the spread and mass contamination of the new Coronavirus (COVID-19). COVID-19 produces symptoms ranging from a common cold to severe symptoms that can lead to death. Several strategies have been implemented to improve the well-being of patients during their hospitalization, and virtual reality (VR) has been used. However, whether patients hospitalized for COVID-19 can benefit from this intervention remains unclear. Therefore, this study aimed to investigate whether VR contributes to the control of pain symptoms, the sensation of dyspnea, perception of well-being, anxiety, and depression in patients hospitalized with COVID-19. METHODS: A randomized, double-blind clinical trial was designed. Patients underwent a single session of VR and usual care. The experimental group (n = 22) received VR content to promote relaxation, distraction, and stress relief, whereas the control group (n = 22) received non-specific VR content. RESULTS: The experimental group reported a significant decrease in tiredness, shortness of breath, anxiety, and an increase in the feeling of well-being, whereas the control group showed improvement only in the tiredness and anxiety. CONCLUSIONS: VR is a resource that may improve the symptoms of tiredness, shortness of breath, anxiety, and depression in patients hospitalized with COVID-19. Future studies should investigate the effect of multiple VR sessions on individuals with COVID-19.

16.
Ann Phys Rehabil Med ; 65(6): 101609, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34839056

RESUMEN

BACKGROUND: Virtual reality (VR) and serious games (SGs) are widespread in rehabilitation for many orthopedic and neurological diseases. However, few studies have addressed the effects of rehabilitation with VR-based SGs on clinical, gait, and postural outcomes in individuals with total knee replacement (TKR). OBJECTIVE: The primary objective was the efficacy of balance training using non-immersive VR-based SGs compared to conventional therapy in TKR patients on the Time Up and Go test. Secondary objectives included the efficacy on clinical, gait, and postural outcomes. METHODS: We randomly allocated 56 individuals with unilateral TKR to the experimental group (EG) or control group (CG) for 15 sessions (45 min; 5 times per week) of non-immersive VR-based SGs or conventional balance training, respectively. The primary outcome was functional mobility measured by the Timed Up and Go test; secondary outcomes were walking speed, pain intensity, lower-limb muscular strength, independence in activities of daily living as well as gait and postural parameters. RESULTS: We found significant within-group differences in all clinical outcomes and in a subset of gait (p<0.0001) and postural (p ≤ 0.05) parameters. Analysis of the stance time of the affected limb revealed significant between-group differences (p = 0.022): post-hoc analysis revealed within-group differences in the EG (p = 0.002) but not CG (p = 0.834). We found no significant between-group differences in other outcomes. CONCLUSIONS: Balance training with non-immersive VR-based SGs can improve clinical, gait, and postural outcomes in TKR patients. It was not superior to the CG findings but could be considered an alternative to the conventional approach and can be added to a regular rehabilitation program in TKR patients. The EG had a more physiological duration of the gait stance phase at the end of the treatment than the CG. CLINICALTRIALS: GOV: NCT03454256.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Realidad Virtual , Humanos , Actividades Cotidianas , Artroplastia de Reemplazo de Rodilla/rehabilitación , Marcha/fisiología , Equilibrio Postural/fisiología , Estudios de Tiempo y Movimiento
17.
J Telemed Telecare ; : 1357633X211054839, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851211

RESUMEN

BACKGROUND AND OBJECTIVE: Multiple sclerosis is an inflammatory and neurodegenerative disorder of the central nervous system that can lead to severe motor disability. The aim of this study was to verify the health care effects of an integrated telerehabilitation approach involving dual-domains (motor and cognitive) in people with multiple sclerosis using a virtual reality rehabilitation system compared to a home-based conventional rehabilitative intervention usual care for patient-relevant outcomes (motor, cognitive and participation). METHODS: This multicentre interventional, randomized controlled trial included 70 participants with multiple sclerosis, 35 in the telerehabilitation group (30 sessions of home-based virtual reality rehabilitation system training, five sessions for week each lasting 45 min) and 35 in the usual care group (30 sessions of conventional treatment, five sessions for week). Participants completed the assessment of motor, cognitive and participation outcomes at baseline and after 6 weeks of treatment. RESULTS: In total, 63.3% of the telerehabilitation group exhibited improvement in the physical domain of the quality of life (p = 0.045). The telerehabilitation group showed greater improvement than the usual care group in Mini-BESTest domains of balance (p = 0.014), postural control (p = 0.024), and dynamic walking (p = 0.020) at post-treatment. Higher adherence was registered for telerehabilitation compared with usual care (86.67% vs. 80.0%). DISCUSSION: This study provides evidence that people with multiple sclerosis can benefit from telerehabilitation treatment in the physical domain of the quality of life and motor symptoms. Moreover, considering the persistent COVID-19 emergency, telerehabilitation can represent an effective telemedicine solution for safely delivering effective rehabilitation care to people with multiple sclerosis. TRIAL REGISTRATION NUMBER AND TRIAL REGISTER: This trial was registered at ClinicalTrials.gov (NCT03444454).

18.
Sensors (Basel) ; 21(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073123

RESUMEN

In rehabilitation, the upper limb function is generally assessed using clinical scales and functional motor tests. Although the Box and Block Test (BBT) is commonly used for its simplicity and ease of execution, it does not provide a quantitative measure of movement quality. This study proposes the integration of an ecological Inertial Measurement Units (IMUs) system for analysis of the upper body kinematics during the execution of a targeted version of BBT, by able-bodied persons with subjects with Parkinson's disease (PD). Joint angle parameters (mean angle and range of execution) and hand trajectory kinematic indices (mean velocity, mean acceleration, and dimensionless jerk) were calculated from the data acquired by a network of seven IMUs. The sensors were applied on the trunk, head, and upper limb in order to characterize the motor strategy used during the execution of BBT. Statistics revealed significant differences (p < 0.05) between the two groups, showing compensatory strategies in subjects with PD. The proposed IMU-based targeted BBT protocol allows to assess the upper limb function during manual dexterity tasks and could be used in the future for assessing the efficacy of rehabilitative treatments.


Asunto(s)
Enfermedad de Parkinson , Fenómenos Biomecánicos , Mano , Humanos , Movimiento , Enfermedad de Parkinson/diagnóstico , Extremidad Superior
19.
Brain Sci ; 11(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064245

RESUMEN

BACKGROUND: Several instruments have been proposed to investigate restricted, repetitive behaviors (RRBs) in individuals with Autism Spectrum Disorder (ASD). Systematic video observations may overcome questionnaire and interview limitations to investigate RRBs. This study aimed to analyze stereotypic patterns through video recordings and to determine the correlation between the number and appearance of RRBs to ASD severity. METHODS: Twenty health professionals wearing a body cam recorded 780 specific RRBs during everyday activities of 67 individuals with ASD (mean age: 14.2 ± 3.72 years) for three months. Each stereotypy was classified according to its complexity pattern (i.e., simple or complex) based on body parts and sensory channels involved. RESULTS: The RRBs spectrum for each subject ranged from one to 33 different patterns (mean: 11.6 ± 6.82). Individuals with a lower number of stereotypies shown a lower ASD severity compared to subjects with a higher number of stereotypies (p = 0.044). No significant differences were observed between individuals exhibiting simple (n = 40) and complex patterns (n = 27) of stereotypies on ASD severity, age, sex, and the number of stereotypes. CONCLUSIONS: This study represents the first attempt to systematically document expression patterns of RRBs with a data-driven approach. This may provide a better understanding of the pathophysiology and management of RRBs.

20.
Eur J Phys Rehabil Med ; 57(5): 831-840, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34042413

RESUMEN

INTRODUCTION: The rapid development of electromechanical and robotic devices has profoundly influenced neurorehabilitation. Growth in the scientific and technological aspects thereof is crucial for increasing the number of newly developed devices, and clinicians have welcomed such growth with enthusiasm. Nevertheless, improving the standard for the reporting clinical, technical, and normative aspects of such electromechanical and robotic devices remains an unmet need in neurorehabilitation. Accordingly, this study aimed to analyze the existing literature on electromechanical and robotic devices used in neurorehabilitation, considering the current clinical, technical, and regulatory classification systems. EVIDENCE ACQUISITION: Within the CICERONE Consensus Conference framework, studies on electromechanical and robotic devices used for upper- and lower-limb rehabilitation in persons with neurological disabilities in adulthood and childhood were reviewed. We have conducted a literature search using the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, Science Direct, and Google Scholar. Clinical, technical, and regulatory classification systems were applied to collect information on the electromechanical and robotic devices. The study designs and populations were investigated. EVIDENCE SYNTHESIS: Overall, 316 studies were included in the analysis. More than half (52%) of the studies were randomised controlled trials (RCTs). The population investigated the most suffered from strokes, followed by spinal cord injuries, multiple sclerosis, cerebral palsy, and traumatic brain injuries. In total, 100 devices were described; of these, 19% were certified with the CE mark. Overall, the main type of device was an exoskeleton. However, end-effector devices were primarily used for the upper limbs, whereas exoskeletons were used for the lower limbs (for both children and adults). CONCLUSIONS: The current literature on robotic neurorehabilitation lacks detailed information regarding the technical characteristics of the devices used. This affects the understanding of the possible mechanisms underlying recovery. Unfortunately, many electromechanical and robotic devices are not provided with CE marks, strongly hindering the research on the clinical outcomes of rehabilitation treatments based on these devices. A more significant effort is needed to improve the description of the robotic devices used in neurorehabilitation in terms of the technical and functional details, along with high-quality RCT studies.


Asunto(s)
Dispositivo Exoesqueleto , Rehabilitación Neurológica , Procedimientos Quirúrgicos Robotizados , Robótica , Adulto , Niño , Humanos , Extremidad Superior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA