RESUMEN
In seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish. After hatching, larvae were retained at the same thermal regime, and the predator treatment was continued or not up to emergence. The late eggs decreased their development time, especially under warming and when not exposed to predator cues. However, the late eggs increased their development time when exposed to predator cues, especially to crayfish cues. The TC decreased survival of late larvae that were as eggs exposed to crayfish cues, indicating a carry-over effect. The TC and warming additively reduced late larvae development time to emergence. Independent of the TC, predator cue effects on development time were stronger during the egg than during the larval stage. The late individuals expressed lower mass at emergence, which mirrored the size difference between field-collected mothers. Warming caused a higher mass at emergence. The late individuals increased their boldness and showed a higher number of moves, whereas warming caused a decreased boldness. There was no predator cue effect on larval behaviour. The results indicate that late individuals compensate for late season egg laying, which is facilitated under warming but counteracted under predation risk, especially when imposed by the crayfish.
Asunto(s)
Larva , Conducta Predatoria , Estaciones del Año , Animales , Conducta Predatoria/fisiología , Larva/fisiología , Astacoidea/fisiología , Especies Introducidas , Calentamiento Global , Insectos/fisiología , Odonata/fisiología , Femenino , Temperatura , Percas/fisiología , Percas/crecimiento & desarrollo , Óvulo/fisiología , Presión del TiempoRESUMEN
Winter diapause consists of cessation of development that allows individuals to survive unfavourable conditions. Winter diapause may bear various costs and questions have been raised about the evolutionary mechanisms maintaining facultative diapause. Here, we explored to what extent a facultative winter diapause affects life-history traits and the transcriptome in the damselfly Ischnura elegans, and whether these effects were latitude-specific. We collected adult females at central and high latitudes and raised their larvae in growth chambers. Larvae were split into a non-diapausing and post-winter (diapausing) cohort, were phenotyped and collected for a gene expression analysis. At the phenotypic level, we found no difference in survival between the two cohorts, and the post-winter cohort was larger and heavier than the non-winter cohort. These effects were mostly independent of the latitude of origin. At the transcriptomic level, wintering affected gene expression with a small fraction of genes significantly overlapping across latitudes, especially those related to morphogenesis. In conclusion, we found clear effects of diapause on the phenotype but little evidence for latitudinal-specific effects of diapause. Our results showed a shared transcriptomic basis underpinning diapause demonstrated, here, at the intraspecific level and supported the idea of evolutionary convergence of the response to diapause across organisms.
Asunto(s)
Odonata , Estaciones del Año , Transcriptoma , Animales , Odonata/genética , Femenino , Larva/genética , Fenotipo , Diapausa de Insecto/genética , Diapausa/genética , Aptitud GenéticaRESUMEN
Behavioural variation is important for evolutionary and ecological processes, but can also be useful when predicting consequences of climate change and effects on species ranges. Latitudinal differences in behaviour have received relatively limited research interest when compared to morphological, life history and physiological traits. This study examined differences in expression of three behavioural axes: activity, courtship and boldness, and their correlations, along a European latitudinal gradient spanning ca. 1500 km. The study organism was the temperate damselfly Calopteryx splendens (Harris). We predicted that the expression of both behavioural traits and behavioural syndromes would be positively correlated to latitude, with the lowest values in the southern populations, followed by central and the highest in the north, because animals usually compensate behaviourally for increasing time constraints and declining environmental conditions. We found that behavioural expression varied along the latitudinal cline, although not always in the predicted direction. Activity was the only behaviour that followed our prediction and gradually increased northward. Whereas no south-to-north gradient was seen in any of the behavioural syndromes. The results, particularly for activity, suggest that climatic differences across latitudes change behavioural profiles. However, for other traits such as courtship and boldness, local factors might invoke stronger selection pressures, disrupting the predicted latitudinal pattern.
RESUMEN
Large-scale latitudinal studies that include both north and south edge populations and address sex differences are needed to understand how selection has shaped trait variation. We quantified the variation of flight-related morphological traits (body size, wing size, ratio between wing size and body size, and wing shape) along the whole latitudinal distribution of the damselfly Lestes sponsa, spanning over 2700 km. We tested predictions of geographic variation in the flight-related traits as a signature of: (1) stronger natural selection to improve dispersal in males and females at edge populations; (2) stronger sexual selection to improve reproduction (fecundity in females and sexual behaviors in males) at edge populations. We found that body size and wing size showed a U-shaped latitudinal pattern, while wing ratio showed the inverse shape. However, wing shape varied very little along the latitudinal gradient. We also detected sex-differences in the latitudinal patterns of variation. We discuss how latitudinal differences in natural and sexual selection regimes can lead to the observed quadratic patterns of variation in body and wing morphology via direct or indirect selection. We also discuss the lack of latitudinal variation in wing shape, possibly due to aerodynamic constraints.
Asunto(s)
Odonata/anatomía & histología , Alas de Animales/anatomía & histología , Animales , Tamaño Corporal , Europa (Continente) , Femenino , Vuelo Animal , Geografía , Masculino , Odonata/genética , Odonata/fisiología , Fenotipo , Selección GenéticaRESUMEN
Animal personality has received increasing interest and acknowledgment within ecological research over the past two decades. However, some areas are still poorly studied and need to be developed. For instance, field studies focused on invertebrates are currently highly underrepresented in the literature. More studies including a wider variety of traits measured and species tested are needed to improve our understanding of trait-correlation patterns and generalities. We studied nine behavioral traits, in the damselfly Calopteryx splendens, from an array of three experiments: (i) courtship, (ii) aggressiveness, and (iii) boldness, and calculated their repeatability. The behaviors were measured twice in two different contexts: (i) undisturbed territory and (ii) partially deteriorated territory. Traits related to courtship and boldness were all repeatable across the two contexts. Among aggressive behaviors, only one trait (number of hits) was repeatable. This work demonstrates, for the first time, the presence of within-population personality differences in an adult damselfly in the wild. We further propose C. splendens as a promising model species for testing personality in the wild under highly controlled environmental conditions.
RESUMEN
Understanding why and how behavioral profiles differ across latitudes can help predict behavioral responses to environmental change. The first response to environmental change that an organism exhibits is commonly a behavioral response. Change in one behavior usually results in shifts in other correlated behaviors, which may adaptively or maladaptively vary across environments and/or time. However, one important aspect that is often neglected when studying behavioral expressions among populations is if/how the experimental design might affect the results. This is unfortunate since animals often plastically modify their behavior to the environment, for example, rearing conditions. We studied behavioral traits and trait correlations in larvae of a univoltine damselfly, Lestes sponsa, along its latitudinal distribution, spreading over 3,300 km. We compared behavioral profiles among larvae grown in two conditions: (a) native temperatures and photoperiods or (b) averaged constant temperatures and photoperiods (common-garden). We hypothesized latitudinal differences in behavioral traits regardless of the conditions in which larvae were grown, with northern populations expressing higher activity, boldness, and foraging efficiency. When grown in native conditions, northern larvae were bolder, more active and more effective in prey capture than central and low latitude populations, respectively, as well as showed the strongest behavioral correlations. In contrast, larvae reared in common-garden conditions showed no differences between regions in both individual traits and trait correlations. The results suggest different selective pressures acting on the studied traits across populations, with environment as a central determinant of the observed trait values. Common-garden designed experiments may evoke population-dependent levels of plastic response to the artificial conditions and, hence, generate results that lack ecological relevance when studying multi-population differences in behavior.
RESUMEN
A shift in the relative arrival of offspring, for example a shift in hatching time, can affect competition at the intraspecific level through size-mediated priority effects, where the larger individuals gain more resources. These priority effects are likely to be affected by climate warming and the rate of intraspecific predation, that is cannibalism. In a laboratory experiment, we examined size-mediated priority effects in larvae of the univoltine damselfly, Lestes sponsa, at two different temperatures (21 and 23°C). We created three size groups of larvae by manipulating hatching time: early hatched with a large size (extra-advanced), intermediate hatched with an intermediate size (advanced) and late hatched with a small size (non-advanced). Thereafter, we reared the larvae from these groups in non-mixed and mixed groups of 12 larvae. We found strong priority and temperature effects. First, extra-advanced larvae most often had higher survival, growth and development rates than non-advanced larvae in mixed groups, compared to groups that consisted of only extra-advanced larvae. Second, temperature increased growth and development rates and cannibalism. However, the strength of priority effects did not differ between the two experimental temperatures, because there was no statistical interaction between temperature and treatments. That is, the mixed and non-mixed groups of non-advanced, advanced and extra-advanced larvae showed the same relative change in life-history traits across the two temperatures. Non-advanced and advanced larvae had similar or higher growth rate and mass in mixed groups compared to non-mixed groups, suggesting that predation from advanced larvae in the mixed group released resources for the non-advanced and advanced larvae that survived despite cannibalism risk. Thus, a thinning effect occurred due to cannibalism caused by priority effects. The results suggest that a shift in the relative arrival of offspring can cause temperature-dependent priority effects, mediated through cannibalism, growth and development, which may change the size distribution and abundance of emerging aquatic insects.
Asunto(s)
Canibalismo , Odonata , Animales , Insectos , Larva , TemperaturaRESUMEN
Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life-history traits and the correlations among these traits. To predict the response of life-history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance-covariance matrix, G. Here, we estimated G for key life-history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set-up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude-specific covariance of the life-history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance-covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance-covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments.
Asunto(s)
Variación Genética , Rasgos de la Historia de Vida , Odonata/genética , Distribución Animal , Animales , Europa (Continente) , Factores de TiempoRESUMEN
BACKGROUND: Predation is ubiquitous in nature. One form of predation is cannibalism, which is affected by many factors such as size structure and resource density. However, cannibalism may also be influenced by abiotic factors such as seasonal time constraints. Since time constraints are greater at high latitudes, cannibalism could be stronger at such latitudes, but we know next to nothing about latitudinal variation in cannibalism. In this study, we examined cannibalism and activity in larvae of the damselfly Lestes sponsa along a latitudinal gradient across Europe. We did this by raising larvae from the egg stage at different temperatures and photoperiods corresponding to different latitudes. RESULTS: We found that the more seasonally time-constrained populations in northern latitudes and individuals subjected to greater seasonal time constraints exhibited a higher level of cannibalism. We also found that activity was higher at north latitude conditions, and thus correlated with cannibalism, suggesting that this behaviour mediates higher levels of cannibalism in time-constrained animals. CONCLUSIONS: Our results go counter to the classical latitude-predation pattern which predicts higher predation at lower latitudes, since we found that predation was stronger at higher latitudes. The differences in cannibalism might have implications for population dynamics along the latitudinal gradients, but further experiments are needed to explore this.
Asunto(s)
Canibalismo , Odonata/fisiología , Animales , Europa (Continente) , Femenino , Larva/fisiología , Fotoperiodo , Dinámica Poblacional , Conducta Predatoria , Estaciones del AñoRESUMEN
Latitudinal differences in life history traits driven by differences in seasonal time constraints have been widely documented. Yet, latitudinal patterns in (age-specific) mortality rates have been poorly studied. Here, we studied latitudinal differences in pre-adult age-specific mortality patterns in the strictly univoltine damselfly Lestes sponsa. We compared individuals from three latitudes reared from the egg stage in the laboratory at temperatures and photoperiods simulating those at the latitude of origin (main experiment) and under common-garden conditions at a fixed temperature and photoperiod (supplementary experiment). Results from the main experiment showed that the high-latitude population exhibited higher mortality rates than the central and southern populations, likely reflecting a cost of their faster development. Age-specific mortality patterns, also indicated higher ageing rates in the high-latitude compared to the low-latitude population, which likely had a genetic basis. The strong within-population variation in hatching dates in the low-latitude population caused variation in mortality rates; individuals that hatched later showed higher mortality rates presumably due to their shorter development times compared to larvae that hatched earlier. In both experiments, larvae from all three latitudes showed accelerated mortality rates with age, which is consistent with a pattern of senescence before adulthood.
Asunto(s)
Senescencia Celular , Odonata/embriología , Fotoperiodo , Estaciones del Año , Temperatura , Factores de Edad , Animales , Larva/crecimiento & desarrollo , Dinámica PoblacionalRESUMEN
Time constraints cause strong selection on life-history traits, because populations need to complete their life cycles within a shorter time. We therefore expect lower genetic variation in these traits in high- than in low-latitude populations, since the former are more time-constrained. The aim was to estimate life-history traits and their genetic variation in an obligately univoltine damselfly along a latitudinal gradient of 2730 km. Populations were grown in the laboratory at temperatures and photoperiods simulating those at their place of origin. In a complementary experiment, individuals from the same families were grown in constant temperature and photoperiod that mimicked average conditions across the latitude. Development time and size was faster and smaller, respectively, and growth rate was higher at northern latitudes. Additive genetic variance was very low for life-history traits, and estimates for egg development time and larval growth rate showed significant decreases towards northern latitudes. The expression of genetic effects in life-history traits differed considerably when individuals were grown in constant rather than simulated and naturally variable conditions. Our results support strong selection by time constraints. They also highlight the importance of growing organisms in their native environment for correct estimates of genetic variance at their place of origin. Our results also suggest that the evolutionary potential of life-history traits is very low at northern compared to southern latitudes, but that changes in climate could alter this pattern.