Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pediatr Hematol Oncol ; 45(6): 339-343, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314887

RESUMEN

Most children treated for immune thrombocytopenia remit during the first year following diagnosis. For the ∼40% who develop persistent or chronic disease, second-line treatment options include immunomodulation and thrombomimetic agents. While immunomodulators target the underlying mechanism, prolonged immunosuppression may increase the risk of infection. We report the use of the reversible immunomodulating agent mycophenolate mofetil (MMF) in 16 pediatric patients with immune thrombocytopenia refractory to first-line treatment. Using escalating doses up to 2400 mg/m 2 /d, MMF treatment resulted in a 73% response rate. Adverse events were mostly mild and tolerable. Complete responders have been successfully tapered off MMF with sustained responses.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , Niño , Ácido Micofenólico/uso terapéutico , Inmunosupresores/uso terapéutico , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/inducido químicamente , Trombocitopenia/tratamiento farmacológico , Terapia de Inmunosupresión
2.
Haematologica ; 105(7): 1825-1834, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31558676

RESUMEN

Fanconi anemia (FA), an inherited bone marrow failure (BMF) syndrome, caused by mutations in DNA repair genes, is characterized by congenital anomalies, aplastic anemia, high risk of malignancies and extreme sensitivity to alkylating agents. We aimed to study the clinical presentation, molecular diagnosis and genotype-phenotype correlation among patients with FA from the Israeli inherited BMF registry. Overall, 111 patients of Arab (57%) and Jewish (43%) descent were followed for a median of 15 years (range: 0.1-49); 63% were offspring of consanguineous parents. One-hundred patients (90%) had at least one congenital anomaly; over 80% of the patients developed bone marrow failure; 53% underwent hematopoietic stem-cell transplantation; 33% of the patients developed cancer; no significant association was found between hematopoietic stem-cell transplant and solid tumor development. Nearly 95% of the patients tested had confirmed mutations in the Fanconi genes FANCA (67%), FANCC (13%), FANCG (14%), FANCJ (3%) and FANCD1 (2%), including twenty novel mutations. Patients with FANCA mutations developed cancer at a significantly older age compared to patients with mutations in other Fanconi genes (mean 18.5 and 5.2 years, respectively, P=0.001); however, the overall survival did not depend on the causative gene. We hereby describe a large national cohort of patients with FA, the vast majority genetically diagnosed. Our results suggest an older age for cancer development in patients with FANCA mutations and no increased incidence of solid tumors following hematopoietic stem-cell transplant. Further studies are needed to guide individual treatment and follow-up programs.


Asunto(s)
Anemia de Fanconi , Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Estudios de Asociación Genética , Humanos , Israel , Mutación
3.
PLoS One ; 9(2): e89098, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558476

RESUMEN

Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome caused by ribosomal protein haploinsufficiency. DBA exhibits marked phenotypic variability, commonly presenting with erythroid hypoplasia, less consistently with non-erythroid features. The p53 pathway, activated by abortive ribosome assembly, is hypothesized to contribute to the erythroid failure of DBA. We studied murine embryonic stem (ES) cell lines harboring a gene trap mutation in a ribosomal protein gene, either Rps19 or Rpl5. Both mutants exhibited ribosomal protein haploinsufficiency and polysome defects. Rps19 mutant ES cells showed significant increase in p53 protein expression, however, there was no similar increase in the Rpl5 mutant cells. Embryoid body formation was diminished in both mutants but nonspecifically rescued by knockdown of p53. When embryoid bodies were further differentiated to primitive erythroid colonies, both mutants exhibited a marked reduction in colony formation, which was again nonspecifically rescued by p53 inhibition. Cell cycle analyses were normal in Rps19 mutant ES cells, but there was a significant delay in the G2/M phase in the Rpl5 mutant cells, which was unaffected by p53 knockdown. Concordantly, Rpl5 mutant ES cells had a more pronounced growth defect in liquid culture compared to the Rps19 mutant cells. We conclude that the defects in our RPS19 and RPL5 haploinsufficient mouse ES cells are not adequately explained by p53 stabilization, as p53 knockdown appears to increase the growth and differentiation potential of both parental and mutant cells. Our studies demonstrate that gene trap mouse ES cells are useful tools to study the pathogenesis of DBA.


Asunto(s)
Anemia de Diamond-Blackfan/metabolismo , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Células Madre Embrionarias/fisiología , Células Eritroides/citología , Proteínas Ribosómicas/genética , Animales , Western Blotting , Ciclo Celular/fisiología , Cartilla de ADN/genética , Haploinsuficiencia , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA