Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Drug Metab Dispos ; 51(10): 1391-1402, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37524541

RESUMEN

Numerous biomedical applications have been described for liver-humanized mouse models, such as in drug metabolism or drug-drug interaction (DDI) studies. However, the strong enlargement of the bile acid (BA) pool due to lack of recognition of murine intestine-derived fibroblast growth factor-15 by human hepatocytes and a resulting upregulation in the rate-controlling enzyme for BA synthesis, cytochrome P450 (CYP) 7A1, may pose a challenge in interpreting the results obtained from such mice. To address this challenge, the human fibroblast growth factor-19 (FGF19) gene was inserted into the Fah-/- , Rag2-/- , Il2rg-/- NOD (FRGN) mouse model, allowing repopulation with human hepatocytes capable of responding to FGF19. While a decrease in CYP7A1 expression in human hepatocytes from humanized FRGN19 mice (huFRGN19) and a concomitant reduction in BA production was previously shown, a detailed analysis of the BA pool in these animals has not been elucidated. Furthermore, there are sparse data on the use of this model to assess potential clinical DDI. In the present work, the change in BA composition in huFRGN19 compared with huFRGN control animals was systematically evaluated, and the ability of the model to recapitulate a clinically described CYP3A4-mediated DDI was assessed. In addition to a massive reduction in the total amount of BA, FGF19 expression in huFRGN19 mice resulted in significant changes in the profile of various primary, secondary, and sulfated BAs in serum and feces. Moreover, as observed clinically, administration of the pregnane X receptor agonist rifampicin reduced the oral exposure of the CYP3A4 substrate triazolam. SIGNIFICANCE STATEMENT: Transgenic expression of FGF19 normalizes the unphysiologically high level of bile acids in a chimeric liver-humanized mouse model and leads to massive changes in bile acid composition. These adaptations could overcome one of the potential impediments in the use of these mouse models for drug-drug interaction studies.


Asunto(s)
Ácidos y Sales Biliares , Citocromo P-450 CYP3A , Ratones , Humanos , Animales , Ácidos y Sales Biliares/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ratones Endogámicos NOD , Hígado/metabolismo , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Interacciones Farmacológicas
2.
Stem Cell Reports ; 17(12): 2595-2609, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36332628

RESUMEN

Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.


Asunto(s)
Dieta Occidental , Células Madre , Femenino , Embarazo , Humanos , Ratones , Animales , Macaca mulatta , Ratones Endogámicos NOD , Ratones SCID , Dieta Occidental/efectos adversos
3.
Mo Med ; 119(2): 91-92, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36036032
4.
Cell Stem Cell ; 28(1): 33-47.e8, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32997960

RESUMEN

Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-ß pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.


Asunto(s)
Anemia de Fanconi , Animales , Médula Ósea , Daño del ADN , Anemia de Fanconi/genética , Células Madre Hematopoyéticas , Humanos , Ratones , Factor de Crecimiento Transformador beta
5.
J Biol Chem ; 295(12): 3906-3917, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32054685

RESUMEN

Transferrin receptor 2 (TFR2) is a transmembrane protein expressed mainly in hepatocytes and in developing erythroid cells and is an important focal point in systemic iron regulation. Loss of TFR2 function results in a rare form of the iron-overload disease hereditary hemochromatosis. Although TFR2 in the liver has been shown to be important for regulating iron homeostasis in the body, TFR2's function in erythroid progenitors remains controversial. In this report, we analyzed TFR2-deficient mice in the presence or absence of iron overload to distinguish between the effects caused by a high iron load and those caused by loss of TFR2 function. Analysis of bone marrow from TFR2-deficient mice revealed a reduction in the early burst-forming unit-erythroid and an expansion of late-stage erythroblasts that was independent of iron overload. Spleens of TFR2-deficient mice displayed an increase in colony-forming unit-erythroid progenitors and in all erythroblast populations regardless of iron overload. This expansion of the erythroid compartment coincided with increased erythroferrone (ERFE) expression and serum erythropoietin (EPO) levels. Rescue of hepatic TFR2 expression normalized hepcidin expression and the total cell count of the bone marrow and spleen, but it had no effect on erythroid progenitor frequency. On the basis of these results, we propose a model of TFR2's function in murine erythropoiesis, indicating that deficiency in this receptor is associated with increased erythroid development and expression of EPO and ERFE in extrahepatic tissues independent of TFR's role in the liver.


Asunto(s)
Eritropoyesis , Sobrecarga de Hierro/patología , Receptores de Transferrina/genética , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Citocinas/metabolismo , Eritropoyetina/sangre , Hepcidinas/metabolismo , Sobrecarga de Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/metabolismo , Receptores de Transferrina/deficiencia , Bazo/patología , Células Madre/citología , Células Madre/metabolismo
6.
Dev Biol ; 407(1): 1-11, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26365900

RESUMEN

Primitive erythropoiesis is regulated in a non cell-autonomous fashion across evolution from frogs to mammals. In Xenopus laevis, signals from the overlying ectoderm are required to induce the mesoderm to adopt an erythroid fate. Previous studies in our lab identified the transcription factor GATA2 as a key regulator of this ectodermal signal. To identify GATA2 target genes in the ectoderm required for red blood cell formation in the mesoderm, we used microarray analysis to compare gene expression in ectoderm from GATA2 depleted and wild type embryos. Our analysis identified components of the non-canonical and canonical Wnt pathways as being reciprocally up- and down-regulated downstream of GATA2 in both mesoderm and ectoderm. We show that up-regulation of canonical Wnt signaling during gastrulation blocks commitment to a hematopoietic fate while down-regulation of non-canonical Wnt signaling impairs erythroid differentiation. Our results are consistent with a model in which GATA2 contributes to inhibition of canonical Wnt signaling, thereby permitting progenitors to exit the cell cycle and commit to a hematopoietic fate. Subsequently, activation of non-canonical Wnt signaling plays a later role in enabling these progenitors to differentiate as mature red blood cells.


Asunto(s)
Eritropoyesis , Factor de Transcripción GATA2/fisiología , Vía de Señalización Wnt/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Animales , Proteínas Morfogenéticas Óseas/análisis , Linaje de la Célula , Gastrulación , Xenopus laevis/embriología
7.
Stem Cells ; 33(11): 3304-14, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26119982

RESUMEN

Based on its physical interactions with histone-modifying enzymes, the transcriptional corepressor Rcor1 has been implicated in the epigenetic regulation blood cell development. Previously, we have demonstrated that Rcor1 is essential for the maturation of definitive erythroid cells and fetal survival. To determine the functional role of Rcor1 in steady-state hematopoiesis in the adult, we used a conditional knockout approach. Here, we show that the loss of Rcor1 expression results in the rapid onset of severe anemia due to a complete, cell autonomous block in the maturation of committed erythroid progenitors. By contrast, both the frequency of megakaryocyte progenitors and their capacity to produce platelets were normal. Although the frequency of common lymphoid progenitors and T cells was not altered, B cells were significantly reduced and showed increased apoptosis. However, Rcor1-deficient bone marrow sustained normal levels of B-cells following transplantation, indicating a non-cell autonomous requirement for Rcor1 in B-cell survival. Evaluation of the myelomonocytic lineage revealed an absence of mature neutrophils and a significant increase in the absolute number of monocytic cells. Rcor1-deficient monocytes were less apoptotic and showed ∼100-fold more colony-forming activity than their normal counterparts, but did not give rise to leukemia. Moreover, Rcor1(-/-) monocytes exhibited extensive, cytokine-dependent self-renewal and overexpressed genes associated with hematopoietic stem/progenitor cell expansion including Gata2, Meis1, and Hoxa9. Taken together, these data demonstrate that Rcor1 is essential for the normal differentiation of myeloerythroid progenitors and for appropriately regulating self-renewal activity in the monocyte lineage.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proteínas Co-Represoras/metabolismo , Células Precursoras Eritroides/metabolismo , Neutrófilos/metabolismo , Animales , Células Eritroides/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monocitos/metabolismo
8.
Radiat Res ; 183(3): 338-44, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738896

RESUMEN

Bone marrow suppression due to exposure to ionizing radiation is a significant clinical problem associated with radiation therapy as well as with nonmedical radiation exposure. Currently, there are no small molecule agents available that can enhance hematopoietic regeneration after radiation exposure. Here, we report on the effective mitigation of acute hematopoietic radiation syndrome in mice by the synthetic triterpenoid, RTA 408. The administration of a brief course of RTA 408 treatment, beginning 24 h after lethal doses of radiation to bone marrow, significantly increased overall survival. Importantly, treatment with RTA 408 led to the full recovery of steady state hematopoiesis with normalization of the frequency of hematopoietic stem and progenitor cells. Moreover, hematopoietic stem cells from RTA 408-mitigated mice showed lineage-balanced, long-term, multilineage potential in serial transplantation assays, indicative of their normal self-renewal activity. The potency of RTA 408 in mitigating radiation-induced bone marrow suppression makes it an attractive candidate for potential clinical use in treating both therapy-related and unanticipated radiation exposure.


Asunto(s)
Síndrome de Radiación Aguda/tratamiento farmacológico , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Triterpenos/administración & dosificación , Síndrome de Radiación Aguda/patología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Ratones , Radiación Ionizante , Radioterapia/efectos adversos , Irradiación Corporal Total
9.
Int J Radiat Oncol Biol Phys ; 91(2): 360-7, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25636760

RESUMEN

PURPOSE: Assessing whole-body radiation injury and absorbed dose is essential for remediation efforts following accidental or deliberate exposure in medical, industrial, military, or terrorist incidents. We hypothesize that variations in specific metabolite concentrations extracted from blood plasma would correlate with whole-body radiation injury and dose. METHODS AND MATERIALS: Groups of C57BL/6 mice (n=12 per group) were exposed to 0, 2, 4, 8, and 10.4 Gy of whole-body gamma radiation. At 24 hours after treatment, all animals were euthanized, and both plasma and liver biopsy samples were obtained, the latter being used to identify a distinct hepatic radiation injury response within plasma. A semiquantitative, untargeted metabolite/lipid profile was developed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, which identified 354 biochemical compounds. A second set of C57BL/6 mice (n=6 per group) were used to assess a subset of identified plasma markers beyond 24 hours. RESULTS: We identified a cohort of 37 biochemical compounds in plasma that yielded the optimal separation of the irradiated sample groups, with the most correlated metabolites associated with pyrimidine (positively correlated) and tryptophan (negatively correlated) metabolism. The latter were predominantly associated with indole compounds, and there was evidence that these were also correlated between liver and plasma. No evidence of saturation as a function of dose was observed, as has been noted for studies involving metabolite analysis of urine. CONCLUSIONS: Plasma profiling of specific metabolites related to pyrimidine and tryptophan pathways can be used to differentiate whole-body radiation injury and dose response. As the tryptophan-associated indole compounds have their origin in the intestinal microbiome and subsequently the liver, these metabolites particularly represent an attractive marker for radiation injury within blood plasma.


Asunto(s)
Proteínas Bacterianas/sangre , Intestinos/microbiología , Lípidos/sangre , Proteoma/análisis , Traumatismos por Radiación/sangre , Traumatismos por Radiación/microbiología , Irradiación Corporal Total/efectos adversos , Animales , Biomarcadores/sangre , Relación Dosis-Respuesta en la Radiación , Intestinos/efectos de la radiación , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Leukemia ; 28(10): 1978-1987, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24637335

RESUMEN

Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the upregulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost fourfold reduction in proliferative activity compared with non-vascular-associated AML. Primary AML cells can be induced to downregulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. These novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for AML.


Asunto(s)
Endotelio Vascular/metabolismo , Leucemia Mieloide Aguda/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos CD/metabolismo , Diferenciación Celular , Línea Celular , Supervivencia Celular , Células Cultivadas , Endoglina , Femenino , Humanos , Hibridación Fluorescente in Situ , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Trasplante de Neoplasias , Fenotipo , Receptores de Superficie Celular/metabolismo , Recurrencia , Adulto Joven
11.
Blood ; 123(20): 3175-84, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24652990

RESUMEN

The corepressor Rcor1 has been linked biochemically to hematopoiesis, but its function in vivo remains unknown. We show that mice deleted for Rcor1 are profoundly anemic and die in late gestation. Definitive erythroid cells from mutant mice arrest at the transition from proerythroblast to basophilic erythroblast. Remarkably, Rcor1 null erythroid progenitors cultured in vitro form myeloid colonies instead of erythroid colonies. The mutant proerythroblasts also aberrantly express genes of the myeloid lineage as well as genes typical of hematopoietic stem cells (HSCs) and/or progenitor cells. The colony-stimulating factor 2 receptor ß subunit (Csf2rb), which codes for a receptor implicated in myeloid cytokine signaling, is a direct target for both Rcor1 and the transcription repressor Gfi1b in erythroid cells. In the absence of Rcor1, the Csf2rb gene is highly induced, and Rcor1(-/-) progenitors exhibit CSF2-dependent phospho-Stat5 hypersensitivity. Blocking this pathway can partially reduce myeloid colony formation by Rcor1-deficient erythroid progenitors. Thus, Rcor1 promotes erythropoiesis by repressing HSC and/or progenitor genes, as well as the genes and signaling pathways that lead to myeloid cell fate.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Eritropoyesis , Animales , Células Cultivadas , Proteínas Co-Represoras/genética , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Eritroblastos/citología , Eritroblastos/metabolismo , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Células Mieloides/citología , Receptores de Interleucina-3/metabolismo , Transducción de Señal
12.
Biol Blood Marrow Transplant ; 20(1): 132-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24161922

RESUMEN

Human cytomegalovirus (HCMV) infection, including primary infection resulting from transmission from a seropositive donor to a seronegative recipient (D(+)/R(-)), remains a significant problem in the setting of peripheral blood stem cell transplantation (PBSCT). The lack of a suitable animal model for studying HCMV transmission after PBSCT is a major barrier to understanding this process and, consequently, developing novel interventions to prevent HCMV infection. Our previous work demonstrated that human CD34(+) progenitor cell-engrafted NOD-scid IL2Rγc(null) (NSG) mice support latent HCMV infection after direct inoculation and reactivation after treatment with granulocyte colony-stimulating factor. To more accurately recapitulate HCMV infection in the D(+)/R(-) PBSCT setting, granulocyte colony-stimulating factor-mobilized peripheral blood stem cells from seropositive donors were used to engraft NSG mice. All recipient mice demonstrated evidence of HCMV infection in liver, spleen, and bone marrow. These findings validate the NSG mouse model for studying HCMV transmission during PBSCT.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Trasplante de Células Madre de Sangre Periférica , Animales , Médula Ósea/inmunología , Médula Ósea/patología , Médula Ósea/virología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/patología , Factor Estimulante de Colonias de Granulocitos/farmacología , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Hígado/inmunología , Hígado/patología , Hígado/virología , Ratones , Ratones Transgénicos , Bazo/inmunología , Bazo/patología , Bazo/virología , Trasplante Heterólogo , Carga Viral , Activación Viral , Replicación Viral
13.
Stem Cell Res ; 11(3): 1013-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23939266

RESUMEN

Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic ECs (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150(+), lineage(lo), Sca-1(+), c-Kit(+); CD150(+)LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24h. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48h and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150(+)LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury.


Asunto(s)
Daño del ADN/efectos de la radiación , Células Endoteliales/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de la radiación , Irradiación Corporal Total , Animales , Aorta/citología , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de la radiación , Trasplante de Médula Ósea , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos/farmacología , Hematopoyesis , Humanos , Masculino , Ratones
14.
PLoS Pathog ; 7(12): e1002444, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22241980

RESUMEN

Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULb' that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULb'-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULb' sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2Rγ(c) (null)-humanized mouse model. The UL133-UL138(NULL) virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/fisiología , Sitios Genéticos , Células Madre Hematopoyéticas/virología , Interacciones Huésped-Patógeno/fisiología , Tropismo Viral/fisiología , Replicación Viral/fisiología , Animales , Línea Celular , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID
15.
Cell Host Microbe ; 8(3): 284-91, 2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20833379

RESUMEN

Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in organ transplant recipients. The use of granulocyte-colony stimulating factor (G-CSF)-mobilized stem cells from HCMV seropositive donors is suggested to double the risk of late-onset HCMV disease and chronic graft-versus-host disease in recipients when compared to conventional bone marrow transplantation with HCMV seropositive donors, although the etiology of the increased risk is unknown. To understand mechanisms of HCMV transmission in patients receiving G-CSF-mobilized blood products, we generated a NOD-scid IL2Rγ(c)(null)-humanized mouse model in which HCMV establishes latent infection in human hematopoietic cells. In this model, G-CSF induces the reactivation of latent HCMV in monocytes/macrophages that have migrated into organ tissues. In addition to establishing a humanized mouse model for systemic and latent HCMV infection, these results suggest that the use of G-CSF mobilized blood products from seropositive donors pose an elevated risk for HCMV transmission to recipients.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Factor Estimulante de Colonias de Granulocitos/farmacología , Movilización de Célula Madre Hematopoyética , Macrófagos/virología , Activación Viral , Latencia del Virus , Animales , Antígenos CD34/análisis , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/virología , Citocinas/sangre , Citomegalovirus/genética , Citomegalovirus/inmunología , Citomegalovirus/aislamiento & purificación , Modelos Animales de Enfermedad , Citometría de Flujo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/virología , Humanos , Ratones , Ratones SCID , Monocitos/virología
16.
Blood ; 116(24): 5140-8, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-20826722

RESUMEN

Progressive bone marrow failure is a major cause of morbidity and mortality in human Fanconi Anemia patients. In an effort to develop a Fanconi Anemia murine model to study bone marrow failure, we found that Fancd2(-/-) mice have readily measurable hematopoietic defects. Fancd2 deficiency was associated with a significant decline in the size of the c-Kit(+)Sca-1(+)Lineage(-) (KSL) pool and reduced stem cell repopulation and spleen colony-forming capacity. Fancd2(-/-) KSL cells showed an abnormal cell cycle status and loss of quiescence. In addition, the supportive function of the marrow microenvironment was compromised in Fancd2(-/-) mice. Treatment with Sirt1-mimetic and the antioxidant drug, resveratrol, maintained Fancd2(-/-) KSL cells in quiescence, improved the marrow microenvironment, partially corrected the abnormal cell cycle status, and significantly improved the spleen colony-forming capacity of Fancd2(-/-) bone marrow cells. We conclude that Fancd2(-/-) mice have readily quantifiable hematopoietic defects, and that this model is well suited for pharmacologic screening studies.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Anemia de Fanconi/tratamiento farmacológico , Sistema Hematopoyético/efectos de los fármacos , Estilbenos/farmacología , Animales , Antioxidantes , Médula Ósea/efectos de los fármacos , Ciclo Celular , Linaje de la Célula , Ensayo de Unidades Formadoras de Colonias , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Ratones Noqueados , Ratones Transgénicos , Resveratrol , Bazo/citología , Estilbenos/uso terapéutico , Resultado del Tratamiento
17.
Stem Cell Res ; 4(1): 17-24, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19720572

RESUMEN

Recent studies suggest that endothelial cells are a critical component of the normal hematopoietic microenvironment. Therefore, we sought to determine whether primary endothelial cells have the capacity to repair damaged hematopoietic stem cells. Highly purified populations of primary CD31(+) microvascular endothelial cells isolated from the brain or lung did not express the pan hematopoietic marker CD45, most hematopoietic lineage markers, or the progenitor marker c-kit and did not give rise to hematopoietic cells in vitro or in vivo. Remarkably, the transplantation of small numbers of these microvascular endothelial cells consistently restored hematopoiesis following bone marrow lethal doses of irradiation. Analysis of the peripheral blood of rescued recipients demonstrated that both short-term and long-term multilineage hematopoietic reconstitution was exclusively of host origin. Secondary transplantation studies revealed that microvascular endothelial cell-mediated hematopoietic regeneration also occurs at the level of the hematopoietic stem cell. These findings suggest a potential therapeutic role for microvascular endothelial cells in the self-renewal and repair of adult hematopoietic stem cells.


Asunto(s)
Diferenciación Celular , Células Endoteliales/citología , Células Madre Hematopoyéticas/citología , Animales , Biomarcadores , Linaje de la Célula , Separación Celular , Células Endoteliales/metabolismo , Células Endoteliales/trasplante , Células Madre Hematopoyéticas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
18.
Blood ; 114(20): 4393-401, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19759357

RESUMEN

Bone morphogenetic protein 4 (BMP4) is required for mesoderm commitment to the hematopoietic lineage during early embryogenesis. However, deletion of BMP4 is early embryonically lethal and its functional role in definitive hematopoiesis is unknown. Consequently, we used a BMP4 hypomorph to investigate the role of BMP4 in regulating hematopoietic stem cell (HSC) function and maintaining steady-state hematopoiesis in the adult. Reporter gene expression shows that Bmp4 is expressed in cells associated with the hematopoietic microenvironment including osteoblasts, endothelial cells, and megakaryocytes. Although resting hematopoiesis is normal in a BMP4-deficient background, the number of c-Kit+, Sca-1+, Lineage- cells is significantly reduced. Serial transplantation studies reveal that BMP4-deficient recipients have a microenvironmental defect that reduces the repopulating activity of wild-type HSCs. This defect is even more pronounced in a parabiosis model that demonstrates a profound reduction in wild-type hematopoietic cells within the bone marrow of BMP4-deficient recipients. Furthermore, wild-type HSCs that successfully engraft into the BMP4-deficient bone marrow show a marked decrease in functional stem cell activity when tested in a competitive repopulation assay. Taken together, these findings indicate BMP4 is a critical component of the hematopoietic microenvironment that regulates both HSC number and function.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre/metabolismo , Animales , Apoptosis/fisiología , Western Blotting , Citometría de Flujo , Expresión Génica , Ratones , Parabiosis
19.
Mech Dev ; 126(3-4): 117-27, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19116164

RESUMEN

Vertebrate Bmp2 and Bmp4 diverged from a common ancestral gene and encode closely related proteins. Mice homozygous for null mutations in either gene show early embryonic lethality, thereby precluding analysis of shared functions. In the current studies, we present phenotypic analysis of compound mutant mice heterozygous for a null allele of Bmp2 in combination with null or hypomorphic alleles of Bmp4. Whereas mice lacking a single copy of Bmp2 or Bmp4 are viable and have subtle developmental defects, compound mutants show embryonic and postnatal lethality due to defects in multiple organ systems including the allantois, placental vasculature, ventral body wall, skeleton, eye and heart. Within the heart, BMP2 and BMP4 function coordinately to direct normal lengthening of the outflow tract, proper positioning of the outflow vessels, and septation of the atria, ventricle and atrioventricular canal. Our results identify numerous BMP4-dependent developmental processes that are also very sensitive to BMP2 dosage, thus revealing novel functions of Bmp2.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 4/genética , Organogénesis , Animales , Huesos/anomalías , Membrana Corioalantoides/embriología , Membrana Corioalantoides/metabolismo , Cruzamientos Genéticos , Pérdida del Embrión/genética , Desarrollo Embrionario , Extremidades/embriología , Ojo/embriología , Femenino , Feto/irrigación sanguínea , Feto/metabolismo , Eliminación de Gen , Genotipo , Atrios Cardíacos/anomalías , Atrios Cardíacos/embriología , Cardiopatías Congénitas , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/embriología , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes
20.
PLoS One ; 3(11): e3812, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19043576

RESUMEN

BACKGROUND: Although the lymphatic system arises as an extension of venous vessels in the embryo, little is known about the role of circulating progenitors in the maintenance or development of lymphatic endothelium. Here, we investigated whether hematopoietic stem cells (HSCs) have the potential to give rise to lymphatic endothelial cells (LEC). METHODOLOGY/PRINCIPAL FINDINGS: Following the transfer of marked HSCs into irradiated recipients, donor-derived LEC that co-express the lymphatic endothelial markers Lyve-1 and VEGFR-3 were identified in several tissues. HSC-derived LEC persisted for more than 12 months and contributed to approximately 3-4% of lymphatic vessels. Donor-derived LECs were not detected in mice transplanted with common myeloid progenitors and granulocyte/macrophage progenitors, suggesting that myeloid lineage commitment is not a requisite step in HSC contribution to lymphatic endothelium. Analysis of parabiotic mice revealed direct evidence for the existence of functional, circulating lymphatic progenitors in the absence of acute injury. Furthermore, the transplantation of HSCs into Apc(Min/+) mice resulted in the incorporation of donor-derived LEC into the lymphatic vessels of spontaneously arising intestinal tumors. CONCLUSIONS/SIGNIFICANCE: Our results indicate that HSCs can contribute to normal and tumor associated lymphatic endothelium. These findings suggest that the modification of HSCs may be a novel approach for targeting tumor metastasis and attenuating diseases of the lymphatic system.


Asunto(s)
Endotelio Linfático/citología , Células Madre Hematopoyéticas/fisiología , Trasplante de Células Madre , Animales , Biomarcadores/análisis , Granulocitos , Células Madre Hematopoyéticas/citología , Neoplasias Intestinales/patología , Macrófagos , Ratones , Células Mieloides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA