Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.523
Filtrar
Más filtros

Intervalo de año de publicación
1.
Meat Sci ; 216: 109572, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38970932

RESUMEN

Growing health and environmental concerns have increased demand for all-natural products, with a focus on clean labelling. Sodium nitrite is the most widely used additive in the meat industry because it imparts the typical cured flavour and colour to meat products and, most importantly, their microbiological safety. However, due to health concerns, the European Commission is proposing revised regulations to reduce nitrate and nitrite levels in meat products. As a result, the meat industry is actively seeking alternatives. This study explored the production of four cooked hams utilising nitrate-rich vegetable sources combined with two different nitrate-reducing commercial food cultures, alongside a control ham prepared with sodium nitrite (150 ppm). Microbiological, physico-chemical (pH, water activity, nitrate and nitrite concentration, lipid profile, lipid oxidation) and sensory (texture and colour profile) characterisation of the products was carried out. Challenge tests for Listeria monocytogenes, Clostridium sporogenes and Clostridium perfringens have been performed to assess the growth of pathogens, if present in the products. Results revealed comparable microbiological and physico-chemical profiles across ham formulations, with minor differences observed in colour parameters for sample C. The sensory analysis showed that for the pilot ham formulations A and D, there were no significant differences in consumer perception compared to the control ham. In the challenge tests, L. monocytogenes levels were similar in both control and tested hams. There were no significant differences in C. sporogenes and C. perfringens counts at any temperature or between test and control samples. These results indicate that this technology has a potential future in the cured meat sector, as regulators mandate the reduction of added synthetic chemicals and consumers seek healthier and more natural ingredients in their daily diets.

2.
ACS Omega ; 9(25): 26863-26877, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947835

RESUMEN

Siderophores are well-recognized low-molecular-weight compounds produced by numerous microorganisms to acquire iron from the surrounding environments. These secondary metabolites can form complexes with other metals besides iron, forming soluble metallophores; because of that, they are widely investigated in either the medicinal or environmental field. One of the bottlenecks of siderophore research is related to the identification of new siderophores from microbial sources. Herein we have compiled a comprehensive range of standard and updated methodologies that have been developed over the past few years to provide a comprehensive toolbox in this area to current researchers.

3.
Methods Mol Biol ; 2827: 71-84, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985263

RESUMEN

The success of in vitro cultivation, particularly for micropropagation purposes, depends on the efficient control of contaminants. In this context, the sterilization of plant material constitutes a fundamental step in initiating cultures. Microbial contaminants can be found either on the surface (epiphyte) or inside plant explants (endophyte). However, the latter is generally challenging to detect and may not always be eradicated through surface sterilization alone. Endophyte contaminants, such as bacteria, can persist within plant material over several cultivation cycles, potentially interfering with or inhibiting in vitro establishment, growth, or recovery of cryopreserved materials. Therefore, microscopy techniques, such as electron microscopy, can yield valuable insights into bacterial endophytes' localization, tissue colonization patterns, and functions in in vitro plant culture. This information is essential for adopting effective strategies for eliminating, preventing, or harmonious coexistence with contaminants.


Asunto(s)
Bacterias , Endófitos , Microscopía Electrónica/métodos , Plantas/microbiología
4.
Chronobiol Int ; : 1-13, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007884

RESUMEN

Insomnia, the most prevalent sleep disorder, is commonly associated with other mental and somatic disorders, making it a significant health concern. It is characterized by nighttime symptoms and daytime dysfunction, with sleepiness being a potential criterion for the latter. Sleepiness is a normal physiological state that is typically experienced near usual bedtime, in normal circumstances. In insomnia, it seems somewhat logical the idea that there is significant daytime sleepiness. However, the topic has been the subject of various discussions in sleep medicine, with studies yielding contradictory and inconsistent results. In this article, we aim to critically examine daytime sleepiness in individuals with insomnia disorder and propose an alternative approach to addressing it, both in clinical practice and research settings. It is crucial to further investigate the role of daytime sleepiness in insomnia, particularly by focusing on sleepiness perception as a more relevant dimension to explore in majority of patients. It is plausible that certain insomnia phenotypes are objectively sleepy during the day, but more studies are necessary, particularly with well-defined clinical samples. The implications of assessing sleepiness perception in insomnia for clinical practice are discussed, and new avenues for research are suggested.

5.
Clin Nutr ESPEN ; 63: 332-345, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964655

RESUMEN

BACKGROUND & AIMS: Legumes intake is known to be associated with several health benefits the origins of which is still a matter of debate. This paper addresses a pilot small cohort to probe for metabolic aspects of the interplay between legumes intake, human metabolism and gut microbiota. METHODS: Untargeted nuclear magnetic resonance (NMR) metabolomics of blood plasma and fecal extracts was carried out, in tandem with qPCR analysis of feces, to assess the impact of an 8-week pilot legumes diet intervention on the fecal and plasma metabolomes and gut microbiota of 19 subjects. RESULTS: While the high inter-individual variability hindered the detection of statistically significant changes in the gut microbiome, increased fecal glucose and decreased threonine levels were noted. Correlation analysis between the microbiome and fecal metabolome lead to putative hypotheses regarding the metabolic activities of prevalent bacteria groups (Clostridium leptum subgroup, Roseburia spp., and Faecalibacterium prausnitzii). These included elevated fecal glucose as a preferential energy source, the involvement of valerate/isovalerate and reduced protein degradation in gut microbiota. Plasma metabolomics advanced mannose and betaine as potential markers of legume intake and unveiled a decrease in formate and ketone bodies, the latter suggesting improved energy utilization through legume carbohydrates. Amino acid metabolism was also apparently affected, as suggested by lowered urea, histidine and threonine levels. CONCLUSIONS: Despite the high inter-individual gut microbiome variability characterizing the small cohort addressed, combination of microbiological measurements and untargeted metabolomics unveiled several metabolic effects putatively related to legumes intake. If confirmed in larger cohorts, our findings will support the inclusion of legumes in diets and contribute valuable new insight into the origins of associated health benefits.

6.
PeerJ ; 12: e17502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952971

RESUMEN

Background: Desserts with vegetable ingredients are a constantly expanding global market due to the search for alternatives to cow's milk. Fermentation of these matrices by lactic acid bacteria can add greater functionality to the product, improving its nutritional, sensory, and food safety characteristics, as well as creating bioactive components with beneficial effects on health. Concern for health and well-being has aroused interest in byproducts of the industry that have functional properties for the body, such as mature coconut water, a normally discarded residue that is rich in nutrients. This study aimed to develop a probiotic gelatin based on pulp and water from mature coconuts and evaluate the physicochemical characteristics, viability of the Lacticaseibacillus rhamnosus LR32 strain in the medium, as well as the texture properties of the product. Methods: After collection and cleaning, the physicochemical characterization, mineral analysis, analysis of the total phenolic content and antioxidant activity of mature coconut water were carried out, as well as the centesimal composition of its pulp. Afterwards, the gelling was developed with the addition of modified corn starch, gelatin, sucrose, and probiotic culture, being subjected to acidity analysis, texture profile and cell count, on the first day and every 7 days during 21 days of storage, under refrigeration at 5 °C. An analysis of the centesimal composition was also carried out. Results: The main minerals in coconut water were potassium (1,932.57 mg L-1), sodium (19.57 mg L-1), magnesium (85.13 mg L-1) calcium (279.93 mg L-1) and phosphorus (11.17 mg L- 1), while the pulp had potassium (35.96 g kg-1), sodium (0.97 g kg-1), magnesium (2.18 g kg-1), 37 calcium (1.64 g kg-1), and phosphorus (3.32 g kg-1). The phenolic content of the water and pulp was 5.72 and 9.77 mg gallic acid equivalent (GAE) 100 g-1, respectively, and the antioxidant capacity was 1.67 and 0.98 39 g of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) mg-1, respectively. The coconut pulp had 2.81 g 100 g-1of protein, 1.11 g 100 g-1 of 40 ash, 53% moisture, and 5.81 g 100 g-1 of carbohydrates. The gelatin produced during the storage period presented firmness parameters ranging from 145.82 to 206.81 grams-force (gf), adhesiveness from 692.85 to 1,028.63 gf sec, cohesiveness from 0.604 to 0.473, elasticity from 0.901 to 0.881, gumminess from 86.27 to 97.87 gf, and chewiness from 77.72 to 91.98 gf. Regarding the viability of the probiotic microorganism, the dessert had 7.49 log CFU g-1 that remained viable during the 21-day storage, reaching 8.51 CFU g-1. Acidity ranged from 0.15 to 0.64 g of lactic acid 100 g-1. The centesimal composition of the product showed 4.88 g 100 g-1 of protein, 0.54 g 100 g-1 of ash, 85.21% moisture, and 5.37g 100 g-1 of carbohydrates. The development of the gelatin made it possible to obtain a differentiated product, contributing to diversification in the food sector, providing a viable alternative for maintaining consumer health and reducing costs compared to desserts already available on the market.


Asunto(s)
Cocos , Gelatina , Lacticaseibacillus rhamnosus , Probióticos , Cocos/química , Cocos/microbiología , Gelatina/química , Antioxidantes/farmacología , Antioxidantes/química , Fermentación
7.
J Chem Ecol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958678

RESUMEN

Characteristics such as calcareous morphology and life cycle are used to understand the ecology of calcified rhodophytes. However, there is limited information regarding their chemical profiles and biological activities. Therefore, a systematic review (PRISMA) was conducted to assess the influence of the chemistry of calcareous rhodophytes on ecological interactions in the marine environment. The keywords used were: ["Chemical AND [Ecology OR Interaction OR Response OR Defense OR Effect OR Cue OR Mediated OR Induce]"] AND ["Red Seaweed" OR "Red Macroalgae" OR Rhodophy?] AND [Calcified OR Calcareous] in Science Direct, Scielo, PUBMED, Springer, Web of Science, and Scopus. Only English articles within the proposed theme were considered. Due to the low number of articles, another search was conducted with three classes and 16 genera. Finally, 67 articles were considered valid. Their titles, abstracts, and keywords were analyzed using IRaMuTeQ through factorial, hierarchical and similarity classification. Most of the studies used macroalgae thallus to evaluate chemical mediation while few tested crude extracts. Some substances were noted as sesquiterpene (6-hydroxy-isololiolide), fatty acid (heptadeca5,8,11-triene) and dibromomethane. The articles were divided into four classes: Herbivory, Competition, Settlement/Metamorphosis, and Epiphytism. Crustose calcareous algae were associated with studies of Settlement/Metamorphosis, while calcified algae were linked to herbivory. Thus, the importance of chemistry in the ecology of these algae is evident,and additional studies are needed to identify the substances responsible for ecological interactions. This study collected essential information on calcified red algae, whose diversity appears to be highly vulnerable to the harmful impacts of ongoing climate change.

8.
Dalton Trans ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023244

RESUMEN

Over the past two decades, following the discovery of the important biological roles of carbon monoxide (CO), metal carbonyl complexes have been intensively studied as CO-releasing molecules (CORMs) for therapeutic applications. To improve the properties of "bare" low molecular weight CORMs, attention has been drawn to conjugating CORMs with macromolecular and inorganic scaffolds to produce CO-releasing materials (CORMAs) capable of storing and delivering large payloads of the gasotransmitter. A significant obstacle is to obtain CORMAs that retain the beneficial features of the parent CORMs. In the present work, a crystalline metal-organic framework (MOF) formulated as Mo(CO)3(4,4'-bipyridine)3/2 (Mobpy), with a structure based on Mo(CO)3 metallic nodes and bipyridine linkers, has been prepared in near quantitative yield by a straightforward reflux method, and found to exhibit CO-release properties that mimic those typically observed for molybdenum carbonyl CORMs. Mobpy was characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR, FT-Raman and diffuse reflectance (DR) UV-vis spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR. The release of CO from Mobpy was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mobpy liberates CO upon contact with a physiological buffer in the dark, leading to a maximum released amount of 1.3-1.5 mmol g-1, after 1.5 h at 37 °C, with half-lives of 0.5-1.0 h (time to transfer 0.5 equiv. of CO to Mb). In the solid-state and under open air, Mobpy undergoes complete decarbonylation over a period of 42 days, corresponding to a theoretical CO-release of 7.25 mmol g-1.

9.
Foods ; 13(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38890828

RESUMEN

Carotenoids, prominent lipid-soluble phytochemicals in the human diet, are responsible for vibrant colours in nature and play crucial roles in human health. While they are extensively studied for their antioxidant properties and contributions to vitamin A synthesis, their interactions with the intestinal microbiota (IM) remain poorly understood. In this study, beta (ß)-carotene, lutein, lycopene, a mixture of these three pigments, and the alga Osmundea pinnatifida were submitted to simulated gastrointestinal digestion (GID) and evaluated on human faecal samples. The results showed varying effects on IM metabolic dynamics, organic acid production, and microbial composition. Carotenoid exposure influenced glucose metabolism and induced the production of organic acids, notably succinic and acetic acids, compared with the control. Microbial composition analysis revealed shifts in phyla abundance, particularly increased Pseudomonadota. The α-diversity indices demonstrated higher diversity in ß-carotene and the pigments' mixture samples, while the ß-diversity analysis indicated significant dissimilarity between the control and the carotenoid sample groups. UPLC-qTOF MS analysis suggested dynamic changes in carotenoid compounds during simulated fermentation, with lutein exhibiting distinct mass ion fragmentation patterns. This comprehensive research enhances our understanding of carotenoid-IM interactions, shedding light on potential health implications and the need for tailored interventions for optimal outcomes.

10.
Animals (Basel) ; 14(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891670

RESUMEN

Environmental changes in the Brazilian Pantanal and Cerrado facilitate the spread of parasitic diseases in wildlife, with significant implications for public health owing to their zoonotic potential. This study aimed to examine the occurrence and diversity of gastrointestinal parasites in wild felids within these regions to assess their ecological and health impacts. We collected and analyzed helminth-positive samples from 27 wild felids using specific taxonomic keys. Diverse parasitic taxa were detected, including zoonotic helminths, such as Ancylostoma braziliense, Ancylostoma caninum, Ancylostoma pluridentatum, Toxocara cati, Toxocara canis, Dipylidium caninum, Taenia spp., Echinococcus spp., and Spirometra spp. Other nematodes, such as Physaloptera praeputialis and Physaloptera anomala, were identified, along with acanthocephalans from the genus Oncicola and a trematode, Neodiplostomum spp. (potentially the first record of this parasite in wild felids in the Americas). Human encroachment into natural habitats has profound effects on wild populations, influencing parasitic infection rates and patterns. This study underscores the importance of continuous monitoring and research on parasitic infections as a means of safeguarding both wildlife and human populations and highlights the role of wild felids as bioindicators of environmental health.

11.
Appl Microbiol Biotechnol ; 108(1): 368, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860989

RESUMEN

The increasing applications for eicosapentaenoic acid (EPA) and the potential shortfall in supply due to sustainability and contamination issues related with its conventional sources (i.e., fish oils; seafood) led to an extensive search for alternative and sustainable sources, as well as production processes. The present mini-review covers all the steps involved in the production of EPA from microorganisms, with a deeper focus on microalgae. From production systems to downstream processing, the most important achievements within each area are briefly highlighted. Comparative tables of methodologies are also provided, as well as additional references of recent reviews, so that readers may deepen their knowledge in the different issues addressed. KEY POINTS: • Microorganisms are more sustainable alternative sources of EPA than fish. • Due to the costly separation from DHA, species that produce only EPA are preferable. • EPA production can be optimised using non-genetic and genetic tailoring engineering.


Asunto(s)
Ácido Eicosapentaenoico , Microalgas , Ácido Eicosapentaenoico/biosíntesis , Ácido Eicosapentaenoico/metabolismo , Microalgas/metabolismo , Bacterias/metabolismo , Bacterias/genética
14.
Vet Sci ; 11(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38921980

RESUMEN

Bovine mastitis is an important and costly disease to dairy cattle. Diagnostic methods usually performed in Brazil are somatic cell counts (SCC) and milk microbiology. Low bacteria shedding in milk implies no colony growth in microbiological tests and false negative results. Streptococcus agalactiae and Staphylococcus aureus are principal pathogens of mixed mastitis. However, S. agalactiae has a higher bacterial release from the mammary gland than S. aureus, affecting microbiological sensitivity to diagnose S. aureus. This study aimed to estimate the SCC and total bacterial count (TBC) from cows according to pathogen isolated in milk and to evaluate variation in S. aureus diagnosis by a microbiological test during S. agalactiae treatment, which is called blitz therapy. Both S. agalactiae and S. aureus presented high SCC means, although S. agalactiae showed shedding of bacteria 2.3 times greater than S. aureus. Microbiological sensitivity to S. aureus increased for 5 months during S. agalactiae treatment. The prevalence of S. agalactiae fell after 5 months of therapeutic procedures. The prevalence of S. aureus increased to 39.0. The results showed that due to high sensitivity, the polymerase chain reaction (PCR) could be used at the beginning of blitz therapy with the goal of S. agalactiae eradication from the dairy herd.

15.
Life Sci ; 351: 122793, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848938

RESUMEN

The enteric nervous system (ENS) regulates numerous functional and immunological attributes of the gastrointestinal tract. Alterations in ENS cell function have been linked to intestinal outcomes in various metabolic, intestinal, and neurological disorders. Chronic kidney disease (CKD) is associated with a challenging intestinal environment due to gut dysbiosis, which further affects patient quality of life. Although the gut-related repercussions of CKD have been thoroughly investigated, the involvement of the ENS in this puzzle remains unclear. ENS cell dysfunction, such as glial reactivity and alterations in cholinergic signaling in the small intestine and colon, in CKD are associated with a wide range of intestinal pathways and responses in affected patients. This review discusses how the ENS is affected in CKD and how it is involved in gut-related outcomes, including intestinal permeability, inflammation, oxidative stress, and dysmotility.


Asunto(s)
Sistema Nervioso Entérico , Insuficiencia Renal Crónica , Humanos , Sistema Nervioso Entérico/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/metabolismo , Animales , Riñón/fisiopatología , Microbioma Gastrointestinal , Estrés Oxidativo , Disbiosis/complicaciones , Tracto Gastrointestinal/fisiopatología , Tracto Gastrointestinal/metabolismo , Inflamación
17.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731918

RESUMEN

In the age of information technology and the additional computational search tools and software available, this systematic review aimed to identify potential therapeutic targets for obesity, evaluated in silico and subsequently validated in vivo. The systematic review was initially guided by the research question "What therapeutic targets have been used in in silico analysis for the treatment of obesity?" and structured based on the acronym PECo (P, problem; E, exposure; Co, context). The systematic review protocol was formulated and registered in PROSPERO (CRD42022353808) in accordance with the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis Protocols (PRISMA-P), and the PRISMA was followed for the systematic review. The studies were selected according to the eligibility criteria, aligned with PECo, in the following databases: PubMed, ScienceDirect, Scopus, Web of Science, BVS, and EMBASE. The search strategy yielded 1142 articles, from which, based on the evaluation criteria, 12 were included in the systematic review. Only seven these articles allowed the identification of both in silico and in vivo reassessed therapeutic targets. Among these targets, five were exclusively experimental, one was exclusively theoretical, and one of the targets presented an experimental portion and a portion obtained by modeling. The predominant methodology used was molecular docking and the most studied target was Human Pancreatic Lipase (HPL) (n = 4). The lack of methodological details resulted in more than 50% of the papers being categorized with an "unclear risk of bias" across eight out of the eleven evaluated criteria. From the current systematic review, it seems evident that integrating in silico methodologies into studies of potential drug targets for the exploration of new therapeutic agents provides an important tool, given the ongoing challenges in controlling obesity.


Asunto(s)
Simulación por Computador , Obesidad , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Animales , Simulación del Acoplamiento Molecular , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Lipasa/metabolismo , Lipasa/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos
18.
Chemosphere ; 361: 142355, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768787

RESUMEN

As global effects of water scarcity raise concerns and environmental regulations evolve, contemporary wastewater treatment plants (WWTPs) face the challenge of effectively removing a diverse range of contaminants of emerging concern (CECs) from municipal effluents. This study focuses on the assessment of advanced oxidation processes (AOPs), specifically UV-C/H2O2 and UV-C/Chlorine, for the removal of 14 target CECs in municipal secondary effluent (MSE, spiked with 10 µg L-1 of each CEC) or in the subsequent MSE nanofiltration retentate (NFR, no spiking). Phototreatments were carried out in continuous mode operation, with a hydraulic retention time of 3.4 min, using a tube-in-tube membrane photoreactor. For both wastewater matrices, UV-C photolysis (3.3 kJ L-1) exhibited high efficacy in removing CECs susceptible to photolysis, although lower treatment performance was observed for NFR. In MSE, adding 10 mg L-1 of H2O2 or Cl2 enhanced treatment efficiency, with UV-C/H2O2 outperforming UV-C/Chlorine. Both UV-C/AOPs eliminated the chronic toxicity of MSE toward Chlorella vulgaris. In the NFR, not only was the degradation of target CECs diminished, but chronic toxicity to C. vulgaris persisted after both UV-C/AOPs, with UV-C/Chlorine increasing toxicity due to potential toxic by-products. Nanofiltration permeate (NFP) exhibited low CECs and microbial content. A single chlorine addition effectively controlled Escherichia coli regrowth for 3 days, proving NFP potential for safe reuse in crop irrigation (<1 CFU/100 mL for E. coli; <1 mg L-1 for free chlorine). These findings provide valuable insights into the applications and limitations of UV-C/H2O2 and UV-C/Chlorine for distinct wastewater treatment scenarios.


Asunto(s)
Cloro , Filtración , Peróxido de Hidrógeno , Fotólisis , Rayos Ultravioleta , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Peróxido de Hidrógeno/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Cloro/química , Filtración/métodos , Purificación del Agua/métodos , Chlorella vulgaris/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Oxidación-Reducción
19.
Chemosphere ; 361: 142421, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797202

RESUMEN

Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB' irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.


Asunto(s)
Daphnia , Desinfección , Azul de Metileno , Fármacos Fotosensibilizantes , Aguas Residuales , Aguas Residuales/química , Desinfección/métodos , Daphnia/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Animales , Azul de Metileno/farmacología , Azul de Metileno/química , Porfirinas/química , Porfirinas/farmacología , Bacteriófagos/efectos de los fármacos , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Ecotoxicología
20.
Biochem Pharmacol ; 225: 116266, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710333

RESUMEN

Cancer continues to be a serious threat to human health worldwide. Lung, prostate and triple-negative breast cancers are amongst the most incident and deadliest cancers. Steroidal compounds are one of the most diversified therapeutic classes of compounds and they were proven to be efficient against several types of cancer. The epoxide function has been frequently associated with anticancer activity, particularly the 1,2-epoxide function. For this reason, three 1,2-epoxysteroid derivatives previously synthesised (EP1, EP2 and EP3) and one synthesised for the first time (oxysteride) were evaluated against H1299 (lung), PC3 (prostate) and HCC1806 (triple-negative breast) cancer cell lines. A human non-tumour cell line, MRC-5 (normal lung cell line) was also used. EP2 was the most active compound in all cell lines with IC50 values of 2.50, 3.67 and 1.95 µM, followed by EP3 with IC50 values of 12.65, 15.10 and 14.16 µM in H1299, PC3 and HCC1806 cells, respectively. Additional studies demonstrated that EP2 and EP3 induced cell death by apoptosis at lower doses and apoptosis/necrosis at higher doses, proving that their effects were dose-dependent. Both compounds also exerted their cytotoxicity by ROS production and by inducing double-strand breaks. Furthermore, EP2 and EP3 proved to be much less toxic against a normal lung cell line, MRC5, indicating that both compounds might be selective, and they also demonstrated suitable in silico ADME and toxicity parameters. Finally, none of the compounds induced haemoglobin release. Altogether, these results point out the extreme relevance of both compounds, especially EP2, in the potential treatment of these types of cancer.


Asunto(s)
Antineoplásicos , Compuestos Epoxi , Neoplasias Pulmonares , Neoplasias de la Próstata , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Compuestos Epoxi/farmacología , Compuestos Epoxi/química , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Apoptosis/efectos de los fármacos , Esteroides/farmacología , Esteroides/química , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA