Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(22): 15325-15339, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37223936

RESUMEN

Eleven pure alkylphosphonium carboxylate ionic liquids (ILs) were synthesised following a reliable and accessible route. Tetrabutylphosphonium and tetradecyltrihexylphosphonium cations were associated to a variety of [R-COO]- anions with R varying from shorter to longer linear alkyl chains; smaller to bulkier branched alkyl chains; cyclic saturated aliphatic and aromatic moieties; and one heterocyclic aromatic ring containing nitrogen. A combined experimental and molecular simulation study allowed the full characterization of the physico-chemical properties, the structure and the thermal stability of the synthesized ILs. Although slightly more viscous than their imidazolium counterparts, the viscosities of the prepared salts decrease dramatically with temperature and are comparable to other ILs above 50 °C, a manageable temperature as they are thermally stable up to temperatures above 250 °C, even under an oxidizing atmosphere. The microscopic structure of the phophonium ILs is rich and has been studied both experimentally using SAXS and by molecular dynamics simulation using state of the art polarizable force fields whose parameters were determined when necessary. Unique and surprising anion-anion correlations were found for the tetrazolate-based IL allowing to explain some of the unique physical-chemical properties of this phosphonium salt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA