Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0302278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683782

RESUMEN

The coal mining might cause the disturbance to the vegetation and the disturbance impacts might exist the differences for different areas, and few literatures compared and analyzed different disturbed areas based on the location of the mining face, and paid attention to the post mining self-healing effects of vegetation. Here, this paper selected the GaoFen multispectral images during 2017-2021 to study different areas of Shangwan Mine which includes the old mining area more than 5 years after mining, the new working face underground mined in 2018 and 2019, the natural growth control area and the open-pit mining affected area. The spatiotemporal changes of the surface fraction vegetation coverage (FVC) were analyzed in each area and the correlation between vegetation coverage and climatic factors was studied. The results showed that: (1) The overall vegetation coverage showed a moderate decrease trend in fluctuation from 2017 to 2021. The Open-pit mining affected areas showed the largest decline, reaching 68.3%. The FVC in the underground mining areas had a downward trend, but self-healing effect after mining was also observed. (2) The overall FVC in the study area was positively correlated with the number of precipitation days. (3) There were differences in the sensitivity to mining disturbance for different landform in the underground mining areas. (4) Although the FVC in the Old mining areas had recovered to the level of Natural growth control area, but the annual fluctuation was larger, which might mean lower ecological stability.


Asunto(s)
Minas de Carbón , China , Análisis Espacio-Temporal , Monitoreo del Ambiente/métodos , Plantas , Ecosistema , Minería
2.
Front Plant Sci ; 14: 1308209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288405

RESUMEN

Background: Root cutting caused by underground coal mining subsidence is among the leading causes of plant damage in western China. Detection of root cutting stress is of great importance in evaluating the degree of plant damage and changes in physiological conditions in underground coal mining disturbance conditions. Methods: The present study assessed the use of chlorophyll fluorescence OJIP transient data to evaluate the disturbance characteristics of root cutting stress on leaf photosynthetic mechanisms in the typical shrub Artemisia ordosica Krasch. Different root cutting ratios (10%, 20%, 30%, 50%, 75%, and 100%) were established on the roots of A. ordosica in the field, and the OJIP transient and JIP parameters of the leaves were measured. Results: The overall OJIP curves and each OJIP step in leaves decreased as the root cutting ratio increased, but the impact was relatively small for root cutting ratios of less than 30%. Through the analysis of JIP parameters and the established energy pipeline model, it was found that the energy capture efficiency and electron transfer efficiency of photosystem II decreased as the root cutting ratio increased. Therefore, we also inferred that the threshold for the plant root cutting ratio at which leaf photosynthetic mechanisms begin to change is 30-50%. Conclusion: These results indicate that OJIP transient analysis can serve as a non-destructive, rapid technique for detecting plant root cutting stress in coal mining subsidence areas, which is of great value for non-destructive monitoring of plant root damage.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35457308

RESUMEN

The open-pit coal mine dump in the study area contains many low-concentration heavy metal pollutants, which may cause pollution to the soil interface. Firstly, statistical analysis and geostatistical spatial interpolation methods described heavy metal pollution's spatial distribution. The mine dump heavy metal pollution distribution is strongly random due to disorderly piles, but it is closely related to slope soil erosion. Furthermore, the soil deposition area is where pollutants accumulate. For example, all heavy metal elements converge at the bottom of the dump. Usually, the pollution in the lower part is higher than that in the upper part; the pollution in the lower step is higher than the upper step; the pollution in the soil deposition locations such as flat plate and slope bottom is higher than the soil erosion locations such as slope tip and middle slope. Finally, the hyperspectral remote sensing method described heavy metals pollution's migration characteristics, that the pollutants could affect the soil interface by at least 1 km. This study provides a basis for preventing and controlling critical parts of mine dump heavy metal pollution and pollution path control.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Carbón Mineral/análisis , Monitoreo del Ambiente/métodos , Pradera , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA