Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(7): nwae205, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071097

RESUMEN

Irreversible interfacial reactions at the anodes pose a significant challenge to the long-term stability and lifespan of zinc (Zn) metal batteries, impeding their practical application as energy storage devices. The plating and stripping behavior of Zn ions on polycrystalline surfaces is inherently influenced by the microscopic structure of Zn anodes, a comprehensive understanding of which is crucial but often overlooked. Herein, commercial Zn foils were remodeled through the incorporation of cerium (Ce) elements via the 'pinning effect' during the electrodeposition process. By leveraging the electron-donating effect of Ce atoms segregated at grain boundaries (GBs), the electronic configuration of Zn is restructured to increase active sites for Zn nucleation. This facilitates continuous nucleation throughout the growth stage, leading to a high-rate instantaneous-progressive composite nucleation model that achieves a spatially uniform distribution of Zn nuclei and induces spontaneous grain refinement. Moreover, the incorporation of Ce elements elevates the site energy of GBs, mitigating detrimental parasitic reactions by enhancing the GB stability. Consequently, the remodeled ZnCe electrode exhibits highly reversible Zn plating/stripping with an accumulated capacity of up to 4.0 Ah cm-2 in a Zn symmetric cell over 4000 h without short-circuit behavior. Notably, a ∼0.4 Ah Zn||NH4V4O10 pouch cell runs over 110 cycles with 83% capacity retention with the high-areal-loading cathode (≈20 mg cm-2). This refining-grains strategy offers new insights into designing dendrite-free metal anodes in rechargeable batteries.

2.
Plant Physiol Biochem ; 214: 108887, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38943877

RESUMEN

In the context of climate change, the impact of root-zone warming (RW) on crop nutrient absorption and utilization has emerged as a significant concern that cannot be overlooked. Nitrogen (N) is an essential element for crop growth and development, particularly under stress. The comprehensive effect and relationship between RW and N level remains unclear. The objective of this experiment was to investigate the impact of RW on root-shoot growth and photosynthetic physiological characteristics of maize seedlings under varying N levels. The results demonstrated that optimal RW was beneficial to the growth of maize, while excessive root-zone temperature (RT) significantly impeded N uptake in maize. Under low N treatment, the proportion of N distribution in roots increased, and the root surface area increased by 41 %. Furthermore, under low N levels, the decline in root vitality and the increase in root MDA caused by high RT were mitigated, resulting in an enhancement of the root's ability to cope with stress. For the above-ground part, under the double stress of high RT and low N, the shoot N concentration, leaf nitrate reductase, leaf glutamine synthase, chlorophyll content, net photosynthetic rate and shoot dry matter accumulation decreased by 86 %, 60 %, 35 %, 53 %, 64 % and 59 %, respectively. It can be reasonably concluded that reasonable N management is an important method to effectively reduce the impact of high RT stress.


Asunto(s)
Nitrógeno , Fotosíntesis , Raíces de Plantas , Brotes de la Planta , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Clorofila/metabolismo , Temperatura , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA