Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Cell Death Discov ; 10(1): 275, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851781

RESUMEN

Acute liver failure (ALF) is a disease with a high mortality rate and poor prognosis, whose pathogenesis is not fully understood. PANoptosis is a recently proposed mode of cell death characterized by pyroptosis, apoptosis, and necroptosis, but it cannot be explained by any of them alone. This study aims to explore the role of PANoptosis in ALF and the impact and mechanism of deacetylated malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) on PANoptosis. Our results found that, compared with the control group, the cell viability in the lipopolysaccharide (LPS)/D-galactosamine (D-Gal) group decreased, lactate dehydrogenase (LDH) release increased, cell death increased, and the levels of PANoptosis-related molecules RIPK1, GSDMD, caspase-3, MLKL, IL-18, IL-1ß increased, indicating that PANoptosis increased during ALF. Deacetylated MDH1 at K118 and IDH1 at K93 increased the expression of PANoptosis-related molecules RIPK1, GSDMD, caspase-3, MLKL, IL-18, and IL-1ß in vivo and in vitro. The deacetylation weakened the inhibitory effect of histone deacetylase (HDAC) inhibitor ACY1215 on PANoptosis-related molecules, suggesting that deacetylated MDH1 at K118 and IDH1 at K93 aggravated PANoptosis during ALF. Deacetylated MDH1 at K118 and IDH1 at K93 also promoted the expression of endoplasmic reticulum stress-related molecules BIP, ATF6, XBP1, and CHOP in vivo and in vitro. The use of endoplasmic reticulum stress inhibitor 4-PBA weakened the promotion effect of deacetylated MDH1 K118 and IDH1 K93 on PANoptosis. The results suggested that deacetylated MDH1 at K118 and IDH1 at K93 may aggravate PANoptosis in ALF through endoplasmic reticulum stress signaling. In conclusion, deacetylated MDH1 and IDH1 may aggravate PANoptosis in ALF, and the mechanism may act through endoplasmic reticulum stress signaling.

3.
Oncol Lett ; 28(1): 301, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38765790

RESUMEN

[This retracts the article DOI: 10.3892/ol.2017.6433.].

4.
iScience ; 27(5): 109678, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660411

RESUMEN

The liver is the main organ associated with metabolism. In our previous studies, we identified that the metabolic enzymes malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) were differentially expressed in ALF. The aim of this study was to explore the changes in the acetylation of MDH1 and IDH1 and the therapeutic effect of histone deacetylase (HDAC) inhibitor in acute liver failure (ALF). Decreased levels of many metabolites were observed in ALF patients. MDH1 and IDH1 were decreased in the livers of ALF patients. The HDAC inhibitor ACY1215 improved the expression of MDH1 and IDH1 after treatment with MDH1-siRNA and IDH1-siRNA. Transfection with mutant plasmids and adeno-associated viruses, identified MDH1 K118 acetylation and IDH1 K93 acetylation as two important sites that regulate metabolism in vitro and in vivo.

5.
ACS Appl Mater Interfaces ; 16(7): 8391-8402, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324389

RESUMEN

Enriching erythrocytes and platelets in seconds and providing a fast seal in bleeding sites is vital to fatal hemorrhage control. Herein, hydrophilic chitosan fibrous mats (CECS-D mats) are fabricated by introducing hydrophilic carboxyethyl groups and subsequent catechol groups onto chitosan fibers. Due to strong hydrophilicity, CECS-D mats exhibit rapid liquid-absorption capacity, especially instantaneous absorptivity to the rabbit blood, which can achieve erythrocyte and platelet aggregations quickly by concentrating blood, thus promoting the formation of blood clots. Furthermore, the mats are self-oxidated to form quinone-amine adducts or quinone multimers by adjusting pH conditions, which not only provides tissue adhesion but also induces erythrocyte aggregation and platelet adhesion, further enhancing the seal and triggering quick closure to achieve fast hemostasis. Therefore, the mats reveal superior hemostatic performance in rabbit liver and spleen models over CECS mats and gauze. Especially in the fatal femoral artery injury model of rabbits, the mats reduce the blood loss by ∼75% and shortened the bleeding time by ∼50% compared with CECS mats, which have been reported to have the same hemostatic effect as commercialized Celox products in a swine femoral artery injury model. Besides, the mats are cytocompatible and degradable as well as antibacterial. This chitosan mat is a promising hemostatic material for fatal hemorrhage control.


Asunto(s)
Quitosano , Hemostáticos , Conejos , Animales , Porcinos , Quitosano/farmacología , Hemorragia/tratamiento farmacológico , Hemostáticos/farmacología , Hemostasis , Interacciones Hidrofóbicas e Hidrofílicas , Quinonas
6.
Cell Mol Biol Lett ; 29(1): 8, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172700

RESUMEN

BACKGROUND: Acute liver failure (ALF) is a life-threatening disease, but its pathogenesis is not fully understood. NETosis is a novel mode of cell death. Although the formation of neutrophil extracellular traps (NETs) has been found in various liver diseases, the specific mechanism by which NETosis regulates the development of ALF is unclear. In this article, we explore the role and mechanism of NETosis in the pathogenesis of ALF. METHODS: Clinically, we evaluated NETs-related markers in the liver and peripheral neutrophils of patients with ALF. In in vitro experiments, HL-60 cells were first induced to differentiate into neutrophil-like cells (dHL-60 cells) with dimethyl sulfoxide (DMSO). NETs were formed by inducing dHL-60 cells with PMA. In in vivo experiments, the ALF model in mice was established with LPS/D-gal, and the release of NETs was detected by immunofluorescence staining and western blotting. Finally, the acetylation levels of IDH1 and MDH1 were detected in dHL-60 cells and liver samples by immunoprecipitation. RESULTS: Clinically, increased release of NETs in liver tissue was observed in patients with ALF, and NETs formation was detected in neutrophils from patients with liver failure. In dHL-60 cells, mutations at IDH1-K93 and MDH1-K118 deacetylate IDH1 and MDH1, which promotes the formation of NETs. In a mouse model of ALF, deacetylation of IDH1 and MDH1 resulted in NETosis and promoted the progression of acute liver failure. CONCLUSIONS: Deacetylation of IDH1 and MDH1 reduces their activity and promotes the formation of NETs. This change aggravates the progression of acute liver failure.


Asunto(s)
Trampas Extracelulares , Fallo Hepático Agudo , Humanos , Animales , Ratones , Neutrófilos/metabolismo , Trampas Extracelulares/metabolismo , Procesamiento Proteico-Postraduccional , Modelos Animales de Enfermedad , Fallo Hepático Agudo/metabolismo , Isocitrato Deshidrogenasa/metabolismo
7.
Hepatobiliary Pancreat Dis Int ; 23(1): 43-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36966125

RESUMEN

BACKGROUND: Acute liver failure (ALF) is an unpredictable and life-threatening critical illness. The pathological characteristic of ALF is massive necrosis of hepatocytes and lots of inflammatory cells infiltration which may lead to multiple organ failure. METHODS: Animals were divided into 3 groups, normal, thioacetamide (TAA, ALF model) and TAA + AGK2. Cultured L02 cells were divided into 5 groups, normal, TAA, TAA + mitofusin 2 (MFN2)-siRNA, TAA + AGK2, and TAA + AGK2 + MFN2-siRNA groups. The liver histology was evaluated with hematoxylin and eosin staining, inositol-requiring enzyme 1 (IRE1), activating transcription factor 6ß (ATF6ß), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylated-PERK (p-PERK). C/EBP homologous protein (CHOP), reactive oxygen species (ROS), MFN2 and glutathione peroxidase 4 (GPX4) were measured with Western blotting, and cell viability and liver chemistry were also measured. Mitochondria-associated endoplasmic reticulum membranes (MAMs) were measured by immunofluorescence. RESULTS: The liver tissue in the ALF group had massive inflammatory cell infiltration and hepatocytes necrosis, which were reduced by AGK2 pre-treatment. In comparison to the normal group, apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ in the TAA-induced ALF model group were significantly increased, which were decreased by AGK2 pre-treatment. The levels of MFN2 and GPX4 were decreased in TAA-induced mice compared with the normal group, which were enhanced by AGK2 pre-treatment. Compared with the TAA-induced L02 cell, apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ were further increased and levels of MFN2 and GPX4 were decreased in the MFN2-siRNA group. AGK2 pre-treatment decreased the apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ and enhanced the protein expression of MFN2 and GPX4 in MFN2-siRNA treated L02 cell. Immunofluorescence observation showed that level of MAMs was promoted in the AGK2 pre-treatment group when compared with the TAA-induced group in both mice and L02 cells. CONCLUSIONS: The data suggested that AGK2 pre-treatment had hepatoprotective role in TAA-induced ALF via upregulating the expression of MFN2 and then inhibiting PERK and ferroptosis pathway in ALF.


Asunto(s)
Ferroptosis , Fallo Hepático Agudo , Ratones , Animales , Tioacetamida/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/prevención & control , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/efectos adversos , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Necrosis , ARN Interferente Pequeño/efectos adversos , Estrés del Retículo Endoplásmico/genética
8.
J Clin Transl Hepatol ; 11(6): 1413-1424, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37719956

RESUMEN

Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.

9.
J Integr Med ; 21(5): 464-473, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37620223

RESUMEN

OBJECTIVE: Acute liver failure (ALF) is characterized by severe liver dysfunction, rapid progression and high mortality and is difficult to treat. Studies have found that sulforaphane (SFN), a nuclear factor E2-related factor 2 (NRF2) agonist, has anti-inflammatory, antioxidant and anticancer effects, and has certain protective effects on neurodegenerative diseases, cancer and liver fibrosis. This paper aimed to explore the protective effect of SFN in ALF and it possible mechanisms of action. METHODS: Lipopolysaccharide and D-galactosamine were used to induce liver injury in vitro and in vivo. NRF2 agonist SFN and histone deacetylase 6 (HDAC6) inhibitor ACY1215 were used to observe the protective effect and possible mechanisms of SFN in ALF, respectively. Cell viability, lactate dehydrogenase (LDH), Fe2+, glutathione (GSH) and malondialdehyde (MDA) were detected. The expression of HDAC6, NRF2, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and solute carrier family 7 member 11 (SLC7A11) were detected by Western blotting and immunofluorescence. RESULTS: Our results show that NRF2 was activated by SFN. LDH, Fe2+, MDA and ACSL4 were downregulated, while GSH, GPX4 and SLC7A11 were upregulated by SFN in vitro and in vivo, indicating the inhibitory effect of SFN on ferroptosis. Additionally, HDAC6 expression was decreased in the SFN group, indicating that SFN could downregulate the expression of HDAC6 in ALF. After using the HDAC6 inhibitor, ACY1215, SFN further reduced HDAC6 expression and inhibited ferroptosis, indicating that SFN may inhibit ferroptosis by regulating HDAC6 activity. CONCLUSION: SFN has a protective effect on ALF, and the mechanism may include reduction of ferroptosis through the regulation of HDAC6. Please cite this article as: Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. J Integr Med. 2023; 21(5): 464-473.


Asunto(s)
Ferroptosis , Fallo Hepático Agudo , Humanos , Factor 2 Relacionado con NF-E2/genética , Fallo Hepático Agudo/tratamiento farmacológico , Isotiocianatos/farmacología , Glutatión , Histona Desacetilasa 6
10.
J Inflamm (Lond) ; 20(1): 24, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443080

RESUMEN

BACKGROUND: Acute liver failure (ALF) is one of the most common life-threatening diseases in adults without previous liver disease. Glycogen synthase kinase 3ß (GSK3ß) is a serine/threonine protein kinase that is widely distributed in the cells. Inhibition of its activity can inhibit cell death and promote autophagy through various pathways, thus providing a protective effect. In this study, we aimed to investigate the effect on ALF after inhibition of GSK3ß and its potential mechanisms. METHODS: D- galactosamine(D-Gal) in combination with lipopolysaccharide(LPS) was used to induce ALF in vitro and in vivo. And then GSK3ß inhibitor TDZD-8 was used to explore the protective effect against ALF. After TDZD-8 treatment TUNEL staining and flow techniques were used to detect the proportion of apoptosis in liver tissues and cells respectively, while western blotting and immunofluorescence assays were performed to detect the expression levels of apoptosis, pyroptosis and necroptosis-related proteins in tissues and cells. In addition, western blotting was performed to explore the specific mechanism of hepatoprotective effect after GSK3ß inhibition to detect the expression levels of TAK1, TRAF6 and HDAC3 after TRAF6 and HDAC3 inhibition alone. The co-localization of TRAF6 and HDAC3 in vitro was detected by immunofluorescence, while the interaction between TRAF6 and HDAC3 was detected by immunoprecipitation assay. RESULTS: Both in vivo and in vitro experiments, GSK3ß inhibitor TDZD-8 can significantly alleviate the progression of ALF. Inhibition of GSK3ß activity could significantly reduce the level of hepatocyte apoptosis, pyroptosis, necroptosis and improve liver dysfunction and tissue damage. Furthermore, we found that hepatocyte TAK1 and TRAF6 levels decreased and HDAC3 levels increased in ALF, whereas inhibition of GSK3ß upregulated TAK1 and TRAF6 levels and decreased HDAC3 expression. CONCLUSION: GSK3ß inhibitor TDZD-8 can prevent the progression of ALF, and its action may involve the TRAF6/HDAC3/TAK1 pathway.

11.
J Inflamm Res ; 16: 1523-1532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077221

RESUMEN

PANoptosis is a new cell death proposed by Malireddi et al in 2019, which is characterized by pyroptosis, apoptosis and necroptosis, but cannot be explained by any of them alone. The interaction between pyroptosis, apoptosis and necroptosis is involved in PANoptosis. In this review, from the perspective of PANoptosis, we focus on the relationship between pyroptosis, apoptosis and necroptosis, the key molecules in the process of PANoptosis and the formation of PANoptosome, as well as the role of PANoptosis in diseases. We aim to understand the mechanism of PANoptosis and provide a basis for targeted intervention of PANoptosis-related molecules to treat human diseases.

12.
Therap Adv Gastroenterol ; 15: 17562848221138676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506748

RESUMEN

Over the past two decades, non-alcoholic fatty liver disease (NAFLD) has become a leading burden of hepatocellular carcinoma and liver transplantation. Although the exact pathogenesis of NAFLD has not been fully elucidated, recent hypotheses placed more emphasis on the crucial role of the gut microbiome and its derivatives. Reportedly, microbial metabolites such as short-chain fatty acids, amino acid metabolites (indole and its derivatives), bile acids (BAs), trimethylamine N-oxide (TMAO), and endogenous ethanol exhibit sophisticated bioactive properties. These molecules regulate host lipid, glucose, and BAs metabolic homeostasis via modulating nutrient absorption, energy expenditure, inflammation, and the neuroendocrine axis. Consequently, a broad range of research has studied the therapeutic effects of microbiota-derived metabolites. In this review, we explore the interaction of microbial products and NAFLD. We also discuss the regulatory role of existing NAFLD therapies on metabolite levels and investigate the potential of targeting those metabolites to relieve NAFLD.

13.
J Cell Mol Med ; 26(21): 5528-5538, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36226351

RESUMEN

Acute liver failure (ALF) is life-threatening and often associated with high mortality rates. The aim of the present study was to investigate whether extracellular histone H3 could induce ferroptosis in hepatic macrophages in ALF and explore its potential mechanism. RAW264.7 macrophages and C57BL/6 mice were used in this study. LPS, D-galactosamine (D-Gal), histone H3, histone H3 antibody, NOD2 agonist Muramyl Dipeptide (MDP) and HDAC6-siRNA were administered in this study. The key molecules of ferroptosis, NOD2, HDAC6 and the NF-κb pathway, were detected. In vitro, histone H3 was released into the extracellular environment from cell nucleus after LPS exposure. In addition, histone H3 could induce ferroptosis in RAW264.7 macrophages with increased level of Fe2+ and ROS and decreased levels of GPX4 and GSH. MDP further aggravated ferroptosis in RAW264.7 macrophages stimulated by histone H3, which was accompanied by elevated NOD2, HDAC6, p-P65 and IκBα. HDAC6-siRNA ameliorated ferroptosis in RAW264.7 macrophages induced by histone H3, which was accompanied by decreased levels of HDAC6, p-P65 and IκBα. However, HDAC6-siRNA did not alter NOD2 levels in RAW264.7 macrophages administered histone H3. In vivo, the levels of NOD2, HDAC6 the NF-κb pathway and ferroptosis were increased in ALF mice, which were downregulated by histone H3 antibody and upregulated by histone H3. Extracellular histone H3 could induce ferroptosis in hepatic macrophages in ALF by regulating theNOD2-mediated HDAC6/NF-κb signalling pathway.


Asunto(s)
Ferroptosis , Fallo Hepático Agudo , Animales , Ratones , Acetilmuramil-Alanil-Isoglutamina/farmacología , Histonas , Lipopolisacáridos , Fallo Hepático Agudo/inducido químicamente , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , ARN Interferente Pequeño/genética
14.
Front Physiol ; 13: 915193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923224

RESUMEN

The purpose of the study was to explore the effects of SIRT3 inhibitor 3-TYP on acute liver failure (ALF) in mice and its underlying mechanism. The mice were treated with thioacetamide (TAA, 300 mg/kg) for inducing ALF model. 3-TYP (50 mg/kg) was administered 2 h prior to TAA. The liver histological changes were measured by HE staining. Blood samples were collected for analysis of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). MDA and GSH were used to evaluate the oxidative stress of liver. The expression levels of inflammatory cytokines (TNF-α and IL-1ß) were measured by ELISA and Western blotting. The cell type expression of IL-1ß in liver tissue was detected by immunofluorescent staining. The expression of SIRT3, MnSOD, ALDH2, MAPK, NF-κB, Nrf2/HO-1, p-elF2α/CHOP, and cleaved caspase 3 was determined by Western blotting. TUNEL staining was performed to detect the apoptosis cells of liver tissues. 3-TYP exacerbated the liver injury of ALF mice. 3-TYP increased the inflammatory responses and activation of MAPK and NF-κB pathways. In addition, 3-TYP administration enhanced the damage of oxidative stress, endoplasmic reticulum stress, and promoted hepatocyte apoptosis in ALF mice. 3-TYP exacerbates thioacetamide-induced hepatic injury in mice. Activation of SIRT3 could be a promising target for the treatment of ALF.

15.
Gut Pathog ; 14(1): 29, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35765030

RESUMEN

BACKGROUND: Acute liver failure (ALF) patients are often accompanied by severe energy metabolism abnormalities and intestinal microecological imbalance. The intestinal mucosal barrier is severely damaged. Intestinal endotoxin can induce intestinal endotoxemia through the "Gut-Liver axis". More and more evidence shows that members of the gut microbiota, especially Fusobacterium nucleatum (F. nucleatum), are related to inflammatory bowel disease, but whether F. nucleatum is involved in the development of ALF and whether it affects the liver energy metabolism is unclear. METHODS: This study first detected the abundance of F. nucleatum and its effect on ALF disease, and explored whether F. nucleatum aggravated liver inflammation in vitro and in vivo. RESULTS: Our data showed that liver tissues of ALF patients contained different abundances of F. nucleatum, which were related to the degree of liver inflammation. In addition, we found that F. nucleatum infection affected the energy metabolism of the liver during the development of ALF, inhibited the synthesis pathway of nicotinamide adenine dinucleotide (NAD+)'s salvage metabolism, and promoted inflammatory damage in the liver. In terms of mechanism, F. nucleatum inhibited NAD+ and the NAD+-dependent SIRT1/AMPK signaling pathway, and promoted liver damage of ALF. CONCLUSIONS: Fusobacterium nucleatum coordinates a molecular network including NAD+ and SIRT1 to control the progress of ALF. Detection and targeting of F. nucleatum and its related pathways may provide valuable insights for the treatment of ALF.

16.
World J Gastroenterol ; 28(17): 1798-1813, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35633910

RESUMEN

BACKGROUND: The occurrence and development of acute liver failure (ALF) is closely related to a series of inflammatory reactions, such as the production of reactive oxygen species (ROS). Hypoxia inducible factor 1α (HIF-1α) is a key factor that regulates oxygen homeostasis and redox, and the stability of HIF-1α is related to the ROS level regulated by Sirtuin (Sirt) family. The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease. However, little is known about the relationship between HIF-1α and Sirt1 in the process of ALF and the molecular mechanism. AIM: To investigate whether HIF-1α may be a target of Sirt1 deacetylation and what the effects on ALF are. METHODS: Mice were administrated lipopolysaccharide (LPS)/D-gal and exposed to hypoxic conditions as animal model, and resveratrol was used as an activator of Sirt1. The cellular model was established with L02 cells stimulated by LPS. N-acetyl-L-cysteine was used to remove ROS, and the expression of Sirt1 was inhibited by nicotinamide. Western blotting was used to detect Sirt1 and HIF-1α activity and related protein expression. The possible signaling pathways involved were analyzed by immunofluorescent staining, co-immunoprecipitation, dihydroethidium staining, and Western blotting. RESULTS: Compared with mice stimulated with LPS alone, the expression of Sirt1 decreased, the level of HIF-1α acetylation increased in hypoxic mice, and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly, which was regulated by HIF-1α, indicating an increase of HIF-1α activity. Under hypoxia, the down-regulation of Sirt1 activated and acetylated HIF-1α in L02 cells. The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS. The regulation of ROS was partly through peroxisome proliferator-activated receptor alpha or AMP-activated protein kinase. Resveratrol, a Sirt1 activator, effectively relieved ALF aggravated by hypoxia, the production of ROS, and cell apoptosis. It also induced the deacetylation of HIF-1α and inhibited the activity of HIF-1α. CONCLUSION: Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.


Asunto(s)
Fallo Hepático Agudo , Especies Reactivas de Oxígeno , Sirtuina 1 , Animales , Hipoxia de la Célula , Fallo Hepático Agudo/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Sirtuina 1/metabolismo
17.
Biochem Biophys Res Commun ; 594: 1-7, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35065293

RESUMEN

Evidence shows that trimethylamine (TMA)/trimethylamine-N-oxide (TMAO) is closely related to non-alcoholic fatty liver disease (NAFLD). The conversion of TMA to TMAO is mainly catalyzed by flavin-containing monooxygenases 3 (FMO3) and FMO1. In this study, we explored the role of TMA in the process of NAFLD. The human NAFLD liver puncture data set GSE89632 and rat TMAO gene chip GSE135856 was downloaded for gene differential expression analysis. Besides, oleic acid (OA) combined with palmitate were used to establish high-fat cell model. TMA, TMAO and FMO1-siRNA were used to stimulate L02 cells. Contents of free fatty acid (FFA), triglyceride (TG), TMAO, FMO1 and unfolded protein response (UPR) related proteins GRP78, XBP1, Derlin-1 were detected. Our results showed that FMO1 and PEG10 were important in the progression of NAFLD. Immunohistochemistry showed that FMO1 in NAFLD liver was increased. In addition, the contents of FFA, TG, FMO1 expression, and TMAO were significantly increased after OA + palmitate and TMA stimulation. However, after silencing FMO1 with siRNA, the expressions of these molecules were decreased. Besides, the protein levels of GRP78, XBP1, Derlin-1 were increased after TMAO treatment (all P < 0.05). In Conclusion, high fat and TMA could induce the expression of FMO1 and its metabolite TMAO. When FMO1 is silenced, the effects of high fat and TMA on TMAO are blocked. And the role of TMAO in NAFLD may be through the activation of UPR.


Asunto(s)
Microbioma Gastrointestinal , Metilaminas/química , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxigenasas/biosíntesis , Animales , Línea Celular , Chaperón BiP del Retículo Endoplásmico/biosíntesis , Silenciador del Gen , Humanos , Inmunohistoquímica , Inflamación , Masculino , Proteínas de la Membrana/biosíntesis , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína 1 de Unión a la X-Box/biosíntesis
18.
Hepatology ; 75(1): 182-195, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34396571

RESUMEN

BACKGROUND AND AIM: HBV DNA can be reduced using antiviral drugs in patients with chronic hepatitis B (CHB); however, the rate of HBeAg seroconversion remains low. A clinical trial was conducted to assess the efficacy and safety of a de novo designed liposome-based nanoparticle lipopeptide vaccine, εPA-44, for CHB. APPROACH AND RESULTS: A two-stage phase 2 trial, which included a 76-week, randomized, double-blind, placebo-controlled trial (stage 1) and a 68-week open-label extension (stage 2), was conducted in 15 centers across China (Clinicaltrials.gov No. NCT00869778). In stage 1, 360 human leukocyte antigen A2 (HLA-A2)-positive and HBeAg-positive patients were randomly and equally distributed to receive six subcutaneous injections of 600 µg or 900 µg εPA-44 or placebo at week 0, 4, 8, 12, 20, and 28. In stage 2, 183 patients received extended 900 µg εPA-44, and 26 patients were observed for relapse without further treatment. The primary endpoint was the percentage of patients with HBeAg seroconversion at week 76. At week 76, patients receiving 900 µg εPA-44 achieved significantly higher HBeAg seroconversion rate (38.8%) versus placebo (20.2%) (95% CI, 6.9-29.6%; p = 0.002). With a combined endpoint of HBeAg seroconversion, alanine aminotransferase normalization and HBV DNA < 2,000 IU/mL, both 900 µg (18.1%) and 600 µg (14.3%), resulted in significantly higher rate versus placebo (5.0%) (p = 0.002 and p = 0.02, respectively) at week 76. In stage 2, none (0 of 20) of 900 µg εPA-44-treated patients experienced serologic relapse. The safety profile of εPA-44 was comparable to that of placebo. CONCLUSIONS: Among HLA-A2-positive patients with progressive CHB, a finite duration of 900 µg εPA-44 monotherapy resulted in significantly higher HBeAg seroconversion rate than placebo and sustained off-treatment effect. A phase 3 trial is ongoing (ChiCTR2100043708).


Asunto(s)
Antígenos e de la Hepatitis B/sangre , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/terapia , Vacunas contra Hepatitis Viral/administración & dosificación , Adolescente , Adulto , Método Doble Ciego , Femenino , Antígenos e de la Hepatitis B/inmunología , Hepatitis B Crónica/sangre , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Humanos , Inyecciones Subcutáneas , Liposomas , Masculino , Sistema de Administración de Fármacos con Nanopartículas , Seroconversión , Respuesta Virológica Sostenida , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/química , Vacunas contra Hepatitis Viral/efectos adversos , Vacunas contra Hepatitis Viral/química , Adulto Joven
19.
Eur J Pharmacol ; 915: 174610, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34951978

RESUMEN

Acute liver failure (ALF) is a life-threatening disease and affects multiple organ systems. Pro-inflammatory factors derived from macrophage plays a key role in septicemia. Pinocembrin is a natural favonoid compound, which can be extracted from honey, propolis and several other plants. Recent investigations demonstrate that Pinocembrin has a variety of pharmacological activities, including anti-inflammatory and antioxidant. To investigate the effects of Pinocembrin on ALF, we explored its possible molecular mechanisms through the experiments in vivo and in vitro. Pre-treatment with Pinocembrin attenuated LPS-induced hepatocyte dysfunction and reduced levels of pro-inflammatory factors and macrophages infiltration. Pinocembrin inhibited the hepatocyte apoptosis and pro-inflammatory reaction of peritoneal macrophages by reducing reactive oxygen species (ROS) via the Sirt1/PPARα signaling pathway. Our study suggests that Pinocembrin might represent a novel therapeutic drug and offers a new method for the treatment of ALF.


Asunto(s)
Flavanonas
20.
Front Mol Biosci ; 8: 733507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660695

RESUMEN

Trimethylamine-N-oxide (TMAO) is a molecular metabolite derived from the gut flora, which has recently emerged as a candidate risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). TMAO is mainly derived from gut, where the gut microbiota converts TMA precursors into TMA, which is absorbed into the bloodstream through the intestinal mucosa, and then transformed into TMAO by hepatic flavin monooxygenases (FMOs) in the liver. High-nutrient diets rich in TMA precursors, such as red meat, eggs, and fish, are the main sources of TMAO. Excessively consuming such diets not only directly affects energy metabolism in liver, but also increases the concentration of TMAO in plasma, which promotes the development of MAFLD by affecting bile acid metabolism, unfolded protein response, and oxidative stress. In this review, we focused on the relationship between TMAO and MAFLD and summarized intervention strategies for reducing circulating TMAO concentration, aiming at providing new targets for the prevention and treatment of MAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA