Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(33): 50256-50270, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35226271

RESUMEN

In this study, copper recovery and sensor integration for concentrate flows of membrane processes were studied. In the first phase, cementation tests for copper recovery were carried out with various different Fe/Cu stoichiometric ratios, copper concentrations, temperatures, and stirring speeds. The effects of the parameters which were stirring speed, temperature, stoichiometric ratio, and concentration in the solution on the cementation process were determined. In the second phase, a novel electroanalytical sensor was applied to concentrate flow. The application of cementation within the scope of precious metal recovery from concentrate streams by integrating a sensor to the process as an innovative online-sensing-approach is conducted. Four different copper concentrations (64, 128, 512, 1280 mg/L) and 5 different Fe/Cu stoichiometric ratios for these concentrations were studied. For concentrations of 64 mg/L and 128 mg/L, 1/1, 2/1, 5/1, 7/1, 10/1 Fe/Cu ratios and for both 512 mg/L and 1280 mg/L concentrations, 1/1, 1.25/1, 1.5/1, 1.75/1, 2/1 Fe/Cu ratios were applied. The cumulative average of ICP-MS linearity of developed electroanalytical sensor was 94.9%. The efficient recovery of copper from the concentrate flows with the sensor integrated-cementation process has a strong potential for "Industry 4.0" applications with enhanced automation levels.


Asunto(s)
Cementación , Cobre , Metales , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA