Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Nat Immunol ; 25(1): 66-76, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168955

RESUMEN

CD4+ T cells are central to various immune responses, but the molecular programs that drive and maintain CD4+ T cell immunity are not entirely clear. Here we identify a stem-like program that governs the CD4+ T cell response in transplantation models. Single-cell-transcriptomic analysis revealed that naive alloantigen-specific CD4+ T cells develop into TCF1hi effector precursor (TEP) cells and TCF1-CXCR6+ effectors in transplant recipients. The TCF1-CXCR6+CD4+ effectors lose proliferation capacity and do not reject allografts upon adoptive transfer into secondary hosts. By contrast, the TCF1hiCD4+ TEP cells have dual features of self-renewal and effector differentiation potential, and allograft rejection depends on continuous replenishment of TCF1-CXCR6+ effectors from TCF1hiCD4+ TEP cells. Mechanistically, TCF1 sustains the CD4+ TEP cell population, whereas the transcription factor IRF4 and the glycolytic enzyme LDHA govern the effector differentiation potential of CD4+ TEP cells. Deletion of IRF4 or LDHA in T cells induces transplant acceptance. These findings unravel a stem-like program that controls the self-renewal capacity and effector differentiation potential of CD4+ TEP cells and have implications for T cell-related immunotherapies.


Asunto(s)
Regulación de la Expresión Génica , Linfocitos T Reguladores , Diferenciación Celular
4.
J Am Soc Nephrol ; 33(4): 747-768, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35110364

RESUMEN

BACKGROUND: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS: Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS: Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Animales , Cilios/metabolismo , Quistes/genética , Riñón/metabolismo , Ratones , Mutación , Enfermedades Renales Poliquísticas/metabolismo
5.
Front Immunol ; 12: 725618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512656

RESUMEN

T cell stemness and exhaustion coexist as two key contrasting phenomena during chronic antigen stimulation, such as infection, transplant, cancer, and autoimmunity. T cell exhaustion refers to the progressive loss of effector function caused by chronic antigen exposure. Exhausted T (TEX) cells highly express multiple inhibitory receptors and exhibit severe defects in cell proliferation and cytokine production. The term T cell stemness describes the stem cell-like behaviors of T cells, including self-renewal, multipotency, and functional persistence. It is well accepted that naïve and some memory T cell subsets have stem cell-like properties. When investigating the exhaustive differentiation of T cells in chronic infection and cancer, recent studies highlighted the stemness of "precursors of exhausted" T (TPEX) cells prior to their terminal differentiation to TEX cells. Clinically successful checkpoint blockades for cancer treatment appear to invigorate antitumor TPEX cells but not TEX cells. Here we discuss the transcriptional and epigenetic regulations of T cell stemness and exhaustion, with a focus on how systems immunology was and will be utilized to define the molecular basis underlying the transition of TPEX to TEX cells. We suggest a "stepwise model" of T cell stemness and exhaustion, in which loss of stemness and exhaustion progression are gradual multi-step processes. We provide perspectives on the research needed to define T cell stemness and exhaustion in the transplantation setting, in which allogenic T cells are also chronically exposed to alloantigens. A better understanding of T cell stemness and exhaustion will shed light on developing novel strategies for immunotherapies.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Infección Persistente/inmunología , Linfocitos T/fisiología , Diferenciación Celular , Epigénesis Genética , Neoplasias/terapia , Infección Persistente/terapia
6.
J Heart Lung Transplant ; 40(10): 1122-1132, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34253454

RESUMEN

BACKGOUND: B cells contribute to chronic transplant rejection by producing donor-specific antibodies and promoting T cell response, but how these processes are regulated at the transcriptional level remains unclear. Herein, we investigate the role of transcription factor interferon regulatory factor 4 (IRF4) in controlling B cell response during chronic transplant rejection. METHODS: We generated the Irf4gfp reporter mice to determine IRF4 expression in B cell lineage. We then used mice with B cell-specific IRF4 deletion to define the role of IRF4 in B cell response after NP-KLH immunization or allogeneic heart transplantation. In particular, graft survival and histology, as well as B and T cell responses, were evaluated after transplantation. RESULTS: IRF4 is dynamically expressed at different stages of B cell development and is absent in germinal center (GC) B cells. However, IRF4 ablation in the B cell lineage primarily eliminates GC B cells in both naïve and NP-KLH immunized mice. In the transplantation setting, IRF4 functions intrinsically in B cells and governs allogeneic B cell responses at multiple levels, including GC B cell generation, plasma cell differentiation, donor-specific antibody production, and support of T cell response. B cell-specific IRF4 deletion combined with transient CTLA4-Ig treatment abrogates acute and chronic cardiac allograft rejection in naïve recipient mice but not in donor skin-sensitized recipients. CONCLUSIONS: B cells require IRF4 to mediate chronic transplant rejection. IRF4 ablation in B cells abrogates allogeneic B cell responses and may also inhibit the ability of B cells to prime allogenic T cells. Targeting IRF4 in B cells represents a potential therapeutic strategy for eliminating chronic transplant rejection.


Asunto(s)
Linfocitos B/fisiología , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Trasplante de Corazón/efectos adversos , Factores Reguladores del Interferón/fisiología , Trasplante de Piel/efectos adversos , Animales , Modelos Animales de Enfermedad , Centro Germinal/metabolismo , Supervivencia de Injerto , Haptenos , Hemocianinas , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
7.
J Am Soc Nephrol ; 30(10): 1841-1856, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31337691

RESUMEN

BACKGROUND: Mutations affecting cilia proteins have an established role in renal cyst formation. In mice, the rate of cystogenesis is influenced by the age at which cilia dysfunction occurs and whether the kidney has been injured. Disruption of cilia function before postnatal day 12-14 results in rapid cyst formation; however, cyst formation is slower when cilia dysfunction is induced after postnatal day 14. Rapid cyst formation can also be induced in conditional adult cilia mutant mice by introducing renal injury. Previous studies indicate that macrophages are involved in cyst formation, however the specific role and type of macrophages responsible has not been clarified. METHODS: We analyzed resident macrophage number and subtypes during postnatal renal maturation and after renal injury in control and conditional Ift88 cilia mutant mice. We also used a pharmacological inhibitor of resident macrophage proliferation and accumulation to determine the importance of these cells during rapid cyst formation. RESULTS: Our data show that renal resident macrophages undergo a phenotypic switch from R2b (CD11clo) to R2a (CD11chi) during postnatal renal maturation. The timing of this switch correlates with the period in which cyst formation transitions from rapid to slow following induction of cilia dysfunction. Renal injury induces the reaccumulation of juvenile-like R2b resident macrophages in cilia mutant mice and restores rapid cystogenesis. Loss of primary cilia in injured conditional Ift88 mice results in enhanced epithelial production of membrane-bound CSF1, a cytokine that promotes resident macrophage proliferation. Inhibiting CSF1/CSF1-receptor signaling with a CSF1R kinase inhibitor reduces resident macrophage proliferation, R2b resident macrophage accumulation, and renal cyst formation in two mouse models of cystic disease. CONCLUSIONS: These data uncover an important pathogenic role for resident macrophages during rapid cyst progression.


Asunto(s)
Enfermedades Renales Quísticas/etiología , Macrófagos/fisiología , Animales , Cilios/genética , Femenino , Riñón/crecimiento & desarrollo , Macrófagos/clasificación , Masculino , Ratones , Mutación
8.
Physiol Rep ; 7(1): e13951, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30632307

RESUMEN

Several innate immune response components were recognized as outcome predictors in autosomal dominant polycystic kidney disease (ADPKD) and their causative role in disease pathogenesis was confirmed in animal models. In contrast, the role of adaptive immunity in ADPKD remains relatively unexplored. Therefore, we evaluated T cell populations in kidney and urine of ADPKD patients using flow cytometry and confocal immunofluorescence microscopy approaches. These analyses revealed ADPKD-associated overall increases in the number of intrarenal CD4 and CD8 T cells that were associated with a loss of polarity in distribution between the cortex and medulla (higher in medulla vs. cortex in controls). Also, the urinary T cell-based index correlated moderately with renal function decline in a small cohort of ADPKD patients. Together, these data suggest that similar to innate immune responses, T cells participate in ADPKD pathogenesis. They also point to urinary T cells as a novel candidate marker of the disease activity in ADPKD.


Asunto(s)
Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Riñón/patología , Riñón Poliquístico Autosómico Dominante/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA