Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884485

RESUMEN

Inhibition of the 14q32 microRNAs, miR-329-3p and miR-495-3p, improves post-ischemic neovascularization. Cold-inducible RNA-binding protein (CIRBP) facilitates maturation of these microRNAs. We hypothesized that CIRBP deficiency improves post-ischemic angiogenesis via downregulation of 14q32 microRNA expression. We investigated these regulatory mechanisms both in vitro and in vivo. We induced hindlimb ischemia in Cirp-/- and C57Bl/6-J mice, monitored blood flow recovery with laser Doppler perfusion imaging, and assessed neovascularization via immunohistochemistry. Post-ischemic angiogenesis was enhanced in Cirp-/- mice by 34.3% with no effects on arteriogenesis. In vivo at day 7, miR-329-3p and miR-495-3p expression were downregulated in Cirp-/- mice by 40.6% and 36.2%. In HUVECs, CIRBP expression was upregulated under hypothermia, while miR-329-3p and miR-495-3p expression remained unaffected. siRNA-mediated CIRBP knockdown led to the downregulation of CIRBP-splice-variant-1 (CIRBP-SV1), CIRBP antisense long noncoding RNA (lncRNA-CIRBP-AS1), and miR-495-3p with no effects on the expression of CIRBP-SV2-4 or miR-329-3p. siRNA-mediated CIRBP knockdown improved HUVEC migration and tube formation. SiRNA-mediated lncRNA-CIRBP-AS1 knockdown had similar long-term effects. After short incubation times, however, only CIRBP knockdown affected angiogenesis, indicating that the effects of lncRNA-CIRBP-AS1 knockdown were secondary to CIRBP-SV1 downregulation. CIRBP is a negative regulator of angiogenesis in vitro and in vivo and acts, at least in part, through the regulation of miR-329-3p and miR-495-3p.


Asunto(s)
Isquemia/patología , MicroARNs/genética , Neovascularización Patológica/patología , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/fisiología , Animales , Cromosomas , Miembro Posterior/irrigación sanguínea , Isquemia/etiología , Isquemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Mol Ther Nucleic Acids ; 21: 932-953, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32814251

RESUMEN

Adenosine-to-inosine (A-to-I) editing in the seed sequence of microRNAs can shift the microRNAs' targetomes and thus their function. Using public RNA-sequencing data, we identified 35 vasoactive microRNAs that are A-to-I edited. We quantified A-to-I editing of the primary (pri-)microRNAs in vascular fibroblasts and endothelial cells. Nine pri-microRNAs were indeed edited, and editing consistently increased under ischemia. We determined mature microRNA editing for the highest expressed microRNAs, i.e., miR-376a-3p, miR-376c-3p, miR-381-3p, and miR-411-5p. All four mature microRNAs were edited in their seed sequence. We show that both ADAR1 and ADAR2 (adenosine deaminase acting on RNA 1 and RNA 2) can edit pri-microRNAs in a microRNA-specific manner. MicroRNA editing also increased under ischemia in vivo in a murine hindlimb ischemia model and ex vivo in human veins. For each edited microRNA, we confirmed a shift in targetome. Expression of the edited microRNA targetomes, not the wild-type targetomes, was downregulated under ischemia in vivo. Furthermore, microRNA editing enhanced angiogenesis in vitro and ex vivo. In conclusion, we show that microRNA A-to-I editing is a widespread phenomenon, induced by ischemia. Each editing event results in a novel microRNA with a unique targetome, leading to increased angiogenesis.

4.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429150

RESUMEN

Myostatin is a negative regulator of muscle cell growth and proliferation. Furthermore, myostatin directly affects the expression of 14q32 microRNAs by binding the 14q32 locus. Direct inhibition of 14q32 microRNA miR-495-3p decreased postinterventional restenosis via inhibition of both vascular smooth muscle cell (VSMC) proliferation and local inflammation. Here, we aimed to investigate the effects of myostatin in a mouse model for postinterventional restenosis. In VSMCs in vitro, myostatin led to the dose-specific downregulation of 14q32 microRNAs miR-433-3p, miR-494-3p, and miR-495-3p. VSMC proliferation was inhibited, where cell migration and viability remained unaffected. In a murine postinterventional restenosis model, myostatin infusion did not decrease restenosis, neointimal area, or lumen stenosis. Myostatin inhibited expression of both proliferation marker PCNA and of 14q32 microRNAs miR-433-3p, miR-494-3p, and miR-495-3p dose-specifically in cuffed femoral arteries. However, 14q32 microRNA expression remained unaffected in macrophages and macrophage activation as well as macrophage influx into lesions were not decreased. In conclusion, myostatin did not affect postinterventional restenosis. Although myostatin inhibits 14q32 microRNA expression and proliferation in VSMCs, myostatin had no effect on macrophage activation and infiltration. Our findings underline that restenosis is driven by both VSMC proliferation and local inflammation. Targeting only one of these components is insufficient to prevent restenosis.


Asunto(s)
Reestenosis Coronaria/genética , Regulación de la Expresión Génica , Inflamación/genética , MicroARNs/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miostatina/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromosomas de los Mamíferos/genética , Arteria Femoral/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Front Cardiovasc Med ; 6: 113, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31440517

RESUMEN

Aims: MicroRNAs are regulators of (patho)physiological functions with tissue-specific expression patterns. However, little is known about inter-vascular differences in microRNA expression between blood vessel types or vascular beds. Differences in microRNA expression could influence cardiovascular pathophysiology at specific sites in the vasculature. Therefore, we aimed to map expression profiles of vasoactive 14q32 microRNAs throughout the human vasculature, as well as expression of vasoactive target genes of the 14q32 microRNAs. Furthermore, we aimed to map the DNA methylation status of the 14q32 locus, which has been linked to cardiovascular disease. Methods and Results: We collected 109 samples from different blood vessels, dissected during general surgery. Expression of a representative set of 17 14q32 microRNAs was measured in each sample. All 17 microRNAs showed a unique expression pattern throughout the vasculature. 14q32 microRNA expression was highest in lower limb vessels and lowest in head and neck vessels. All 17 microRNAs were expressed more abundantly in arteries than in veins. Throughout the human vasculature, we observed trends toward an inverse correlation between expression levels of the 14q32 microRNAs and their vasoactive target genes. DNA methylation of the 3 Differentially Methylated Regions (DMRs) along the 14q32 locus did not associate with primary or mature microRNA expression. However, hyper-methylation in venous coronary artery bypass grafts compared to arterial bypass grafts was observed in the Intergenic-DMR and MEG3-DMR. In patients with end-stage peripheral arterial disease we found differential DNA methylation throughout all DMRs in their lower limb veins. These findings were confirmed in a mouse model for vein-graft disease in which we found regulated 14q32 DNA methylation during the active phase of vascular remodeling. In ischemic tissues of a murine hind limb ischemia model we observed an increase in DNA methylation associated with increased ischemia over time. Conclusions: We show that 14q32 microRNAs are abundantly expressed in the human vasculature and that expression differs significantly between different blood vessels. 14q32 DNA methylation also varies throughout the vasculature and is associated with vascular health, independently of microRNA levels. These findings could have important implications for future research and for future site-specific targeting of epigenetics-based therapeutics.

6.
Mol Ther Nucleic Acids ; 14: 329-338, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30665182

RESUMEN

After induction of ischemia in mice, 14q32 microRNAs are regulated in three distinct temporal patterns. These expression patterns, as well as basal expression levels, are independent of the microRNA genes' order in the 14q32 locus. This implies that posttranscriptional processing is a major determinant of 14q32 microRNA expression. Therefore, we hypothesized that RNA binding proteins (RBPs) regulate posttranscriptional processing of 14q32, and we aimed to identify these RBPs. To identify proteins responsible for this posttranscriptional regulation, we used RNA pull-down SILAC mass spectrometry (RP-SMS) on selected precursor microRNAs. We observed differential binding of cold-inducible RBP (CIRBP) and hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) to the precursors of late-upregulated miR-329-3p and unaffected miR-495-3p. Immunohistochemical staining confirmed expression of both CIRBP and HADHB in the adductor muscle of mice. Expression of both CIRBP and HADHB was upregulated after hindlimb ischemia in mice. Using RBP immunoprecipitation experiments, we showed specific binding of CIRBP to pre-miR-329 but not to pri-miR-329. Finally, using CRISPR/Cas9, we generated HADHB-/- 3T3 cells, which display reduced expression of miR-329 and miR-495 but not their precursors. These data suggest a novel role for CIRBP and HADHB in posttranscriptional regulation of 14q32 microRNAs.

7.
Cardiovasc Res ; 115(10): 1519-1532, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544252

RESUMEN

AIMS: We have shown that 14q32 microRNAs are highly involved in vascular remodelling and cardiovascular disease. However, the 14q32 locus also encodes 41 'orphan' small nucleolar RNAs (snoRNAs). We aimed to gather evidence for an independent role for 14q32 snoRNAs in human cardiovascular disease. METHODS AND RESULTS: We performed a lookup of the 14q32 region within the dataset of a genome wide association scan in 5244 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Single nucleotide polymorphisms (SNPs) in the snoRNA-cluster were significantly associated with heart failure. These snoRNA-cluster SNPs were not linked to SNPs in the microRNA-cluster or in MEG3, indicating that snoRNAs modify the risk of cardiovascular disease independently. We looked at expression of 14q32 snoRNAs throughout the human cardio-vasculature. Expression profiles of the 14q32 snoRNAs appeared highly vessel specific. When we compared expression levels of 14q32 snoRNAs in human vena saphena magna (VSM) with those in failed VSM-coronary bypasses, we found that 14q32 snoRNAs were up-regulated. SNORD113.2, which showed a 17-fold up-regulation in failed bypasses, was also up-regulated two-fold in plasma samples drawn from patients with ST-elevation myocardial infarction directly after hospitalization compared with 30 days after start of treatment. However, fitting with the genomic associations, 14q32 snoRNA expression was highest in failing human hearts. In vitro studies show that the 14q32 snoRNAs bind predominantly to methyl-transferase Fibrillarin, indicating that they act through canonical mechanisms, but on non-canonical RNA targets. The canonical C/D-box snoRNA seed sequences were highly conserved between humans and mice. CONCLUSION: 14q32 snoRNAs appear to play an independent role in cardiovascular pathology. 14q32 snoRNAs are specifically regulated throughout the human vasculature and their expression is up-regulated during cardiovascular disease. Our data demonstrate that snoRNAs merit increased effort and attention in future basic and clinical cardiovascular research.


Asunto(s)
Enfermedades Cardiovasculares/genética , Cromosomas Humanos Par 14 , Polimorfismo de Nucleótido Simple , ARN Nucleolar Pequeño/genética , Anciano , Anciano de 80 o más Años , Animales , Apolipoproteína E3/genética , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/terapia , Modelos Animales de Enfermedad , Europa (Continente) , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Células 3T3 NIH , Fenotipo , ARN Nucleolar Pequeño/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto , Transcriptoma , Regulación hacia Arriba
8.
Ann Surg ; 262(5): 841-7; discussion 847-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26583674

RESUMEN

OBJECTIVES: Unstable atherosclerotic lesions in carotid arteries require surgical endarterectomy to reduce the risk of ischemic stroke. We aimed to identify microRNAs that exert a broad effect on atherosclerotic plaque formation and stability in the carotid artery. BACKGROUND: We made a selection of 164 genes involved in atherosclerosis. Using www.targetscan.org, we determined which microRNAs potentially regulate expression of these genes. We identified multiple microRNAs from the 14q32 microRNA cluster, which is highly involved in vascular remodeling. In human plaques, collected during carotid endarterectomy surgery, we found that 14q32 microRNA (miR-494) was abundantly expressed in unstable lesions. METHODS: We induced atherosclerotic plaque formation in hypercholesterolemic ApoE mice by placing semiconstrictive collars around both carotid arteries. We injected "Gene Silencing Oligonucleotides" against miR-494 (GSO-494) or negative control (GSO-control). Using fluorescently labeled GSOs, we confirmed uptake of GSOs in affected areas of the carotids, but not elsewhere in the vasculature. RESULTS: After injection of GSO-494, we observed significant downregulation of miR-494 expression in the carotid arteries, although miR-494 target genes were upregulated. Further analyses revealed a 65% decrease in plaque size after GSO-494 treatment. Plaque stability was increased in GSO-494-treated mice, determined by an 80% decrease in necrotic core size and a 50% increase in plaque collagen content. Inhibition of miR-494 also resulted in decreased cholesterol levels and decreased very low-density lipoprotein (VLDL) fractions. CONCLUSIONS: Treatment with GSO-494 results in smaller atherosclerotic lesions with increased plaque stability. Inhibition of miR-494 may decrease the risk of surgical complications or even avert endarterectomy surgery in some cases.


Asunto(s)
Aterosclerosis/genética , ADN/genética , Regulación de la Expresión Génica , MicroARNs/genética , Placa Aterosclerótica/genética , Animales , Aterosclerosis/metabolismo , Western Blotting , Arterias Carótidas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , MicroARNs/biosíntesis , Placa Aterosclerótica/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA