Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Hortic Res ; 11(2): uhad289, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38487295

RESUMEN

Two decades have passed since the strawberry (Fragaria x ananassa) disease caused by Macrophomina phaseolina, a necrotrophic soilborne fungal pathogen, began surfacing in California, Florida, and elsewhere. This disease has since become one of the most common causes of plant death and yield losses in strawberry. The Macrophomina problem emerged and expanded in the wake of the global phase-out of soil fumigation with methyl bromide and appears to have been aggravated by an increase in climate change-associated abiotic stresses. Here we show that sources of resistance to this pathogen are rare in gene banks and that the favorable alleles they carry are phenotypically unobvious. The latter were exposed by transgressive segregation and selection in populations phenotyped for resistance to Macrophomina under heat and drought stress. The genetic gains were immediate and dramatic. The frequency of highly resistant individuals increased from 1% in selection cycle 0 to 74% in selection cycle 2. Using GWAS and survival analysis, we found that phenotypic selection had increased the frequencies of favorable alleles among 10 loci associated with resistance and that favorable alleles had to be accumulated among four or more of these loci for an individual to acquire resistance. An unexpectedly straightforward solution to the Macrophomina disease resistance breeding problem emerged from our studies, which showed that highly resistant cultivars can be developed by genomic selection per se or marker-assisted stacking of favorable alleles among a comparatively small number of large-effect loci.

2.
Theor Appl Genet ; 135(6): 2121-2145, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35583656

RESUMEN

KEY MESSAGE: Several Fusarium wilt resistance genes were discovered, genetically and physically mapped, and rapidly deployed via marker-assisted selection to develop cultivars resistant to Fusarium oxysporum f. sp. fragariae, a devastating soil-borne pathogen of strawberry. Fusarium wilt, a soilborne disease caused by Fusarium oxysporum f. sp. fragariae, poses a significant threat to strawberry (Fragaria [Formula: see text] ananassa) production in many parts of the world. This pathogen causes wilting, collapse, and death in susceptible genotypes. We previously identified a dominant gene (FW1) on chromosome 2B that confers resistance to race 1 of the pathogen, and hypothesized that gene-for-gene resistance to Fusarium wilt was widespread in strawberry. To explore this, a genetically diverse collection of heirloom and modern cultivars and octoploid ecotypes were screened for resistance to Fusarium wilt races 1 and 2. Here, we show that resistance to both races is widespread in natural and domesticated populations and that resistance to race 1 is conferred by partially to completely dominant alleles among loci (FW1, FW2, FW3, FW4, and FW5) found on three non-homoeologous chromosomes (1A, 2B, and 6B). The underlying genes have not yet been cloned and functionally characterized; however, plausible candidates were identified that encode pattern recognition receptors or other proteins known to confer gene-for-gene resistance in plants. High-throughput genotyping assays for SNPs in linkage disequilibrium with FW1-FW5 were developed to facilitate marker-assisted selection and accelerate the development of race 1 resistant cultivars. This study laid the foundation for identifying the genes encoded by FW1-FW5, in addition to exploring the genetics of resistance to race 2 and other races of the pathogen, as a precaution to averting a Fusarium wilt pandemic.


Asunto(s)
Fragaria , Fusarium , Cromosomas , Fragaria/genética , Enfermedades de las Plantas/genética
3.
Plant Dis ; 106(5): 1401-1407, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34879728

RESUMEN

Previous research determined that Fusarium acuminatum and F. avenaceum are important causal agents of a canker disease in bareroot-propagated fruit and nut trees in California that emerges during cold storage or after transplanting. The disease largely disappeared after 2001, but it reemerged in 2011 in almond trees in at least one nursery. This motivated further study of the etiology and epidemiology of the disease by undertaking studies to determine distribution of the pathogens throughout almond nursery propagation systems and trace possible sources of inoculum. Research initiated in 2013 detected pathogenic Fusarium spp. throughout the almond propagation system, including in healthy trees, in soils, on wheat rotation crops, on equipment, and in the cold-storage facility air. In addition to the two Fusarium spp. implicated previously, F. brachygibbosum and a new Fusarium species, F. californicum, were found to be pathogenic on almond trees. Multilocus sequence typing and somatic compatibility testing confirmed that isolates within a species collected from different materials in the nursery were all highly genetically similar and likely of one clonal lineage. These findings affirm that equipment surfaces, wheat rotation crops, soil, cold-storage facility air, and asymptomatic almond tree materials (i.e., rootstock cuttings, budwood, and scions) can potentially contribute inoculum to increase disease prevalence and severity.


Asunto(s)
Fusarium , Casas Cuna , Prunus dulcis , Fusarium/genética , Variación Genética , Humanos , Lactante , Árboles , Triticum
4.
Fungal Biol ; 125(9): 725-732, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34420699

RESUMEN

Filamentous fungi grow by the elaboration of hyphae, which may fuse to form a network as a colony develops. Fusion of hyphae can occur between genetically different individuals, provided they share a common allele at loci affecting somatic compatibility. Diversity in somatic compatibility phenotypes reduces the frequency of hyphal fusion in a population, thereby slowing the spread of deleterious genetic elements such as viruses and plasmids, which require direct cytoplasmic contact for transmission. Diverse somatic compatibility phenotypes can be generated by recombining alleles through sexual reproduction, but this mechanism may not fully account for the diversity found in nature. For example, multiple compatibility phenotypes of Fusarium circinatum were shown to be associated with the same clonal lineage, which implies they were derived by a mutation rather than recombination through sexual reproduction. Experimental tests of this hypothesis confirmed that spontaneous changes in somatic compatibility can occur at a frequency between 5 and 8 per million spores. Genomic analysis of F. circinatum strains with altered somatic compatibility revealed no consistent evidence of recombination and supported the hypothesis that a spontaneous mutation generated the observed phenotypic change. Genes known to be involved in somatic compatibility had no mutations, suggesting that mutation occurred in a gene with an as yet unexplored function in somatic compatibility.


Asunto(s)
Fusarium , Hifa , Fusarium/fisiología , Genes Fúngicos/genética , Humanos , Hifa/genética , Mutación , Esporas Fúngicas/genética
5.
Plant Dis ; 105(12): 3880-3888, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34232056

RESUMEN

Fusarium circinatum, the causal agent of pitch canker in pines and a cryptic endophyte of grasses, was examined for heritable variation in tolerance of the grass defense compound 2-benzoxazolinone (BOA). A diverse population of F. circinatum progeny was assayed for growth rate on potato dextrose agar amended with BOA. Matings were conducted to allow for selection of progeny with lower and higher tolerance of BOA. The results confirmed heritable variation in BOA tolerance in F. circinatum. A subset of differentially tolerant progeny was used for inoculations of growth chamber-grown Zea mays and greenhouse-grown Pinus radiata. No differences were detected in the rate of infection or extent of colonization of Z. mays inoculated with F. circinatum progeny differing in tolerance of BOA. Pitch canker symptoms in inoculated P. radiata trees showed that high BOA-tolerating isolates induced significantly longer lesion lengths than those induced by low BOA-tolerating isolates. Results from this study were consistent with the proposition that F. circinatum evolved from grass-colonizing ancestors and that pathogenicity to pine is a relatively recent evolutionary innovation.


Asunto(s)
Pinus , Poaceae , Benzoxazoles , Fusarium , Enfermedades de las Plantas
6.
New Phytol ; 230(1): 327-340, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33616938

RESUMEN

The genes required for host-specific pathogenicity in Fusarium oxysporum can be acquired through horizontal chromosome transfer (HCT). However, it is unknown if HCT commonly contributes to the diversification of pathotypes. Using comparative genomics and pathogenicity phenotyping, we explored the role of HCT in the evolution of F. oxysporum f. sp. fragariae, the cause of Fusarium wilt of strawberry, with isolates from four continents. We observed two distinct syndromes: one included chlorosis ('yellows-fragariae') and the other did not ('wilt-fragariae'). All yellows-fragariae isolates carried a predicted pathogenicity chromosome, 'chrY-frag ', that was horizontally transferred at least four times. chrY-frag was associated with virulence on specific cultivars and encoded predicted effectors that were highly upregulated during infection. chrY-frag was not present in wilt-fragariae; isolates causing this syndrome evolved pathogenicity independently. All origins of F. oxysporum f. sp. fragariae occurred outside of the host's native range. Our data support the conclusion that HCT is widespread in F. oxysporum, but pathogenicity can also evolve independently. The absence of chrY-frag in wilt-fragariae suggests that multiple, distinct pathogenicity chromosomes can confer the same host specificity. The wild progenitors of cultivated strawberry (Fragaria × ananassa) did not co-evolve with this pathogen, yet we discovered several sources of genetic resistance.


Asunto(s)
Fragaria , Fusarium , Cromosomas , Fragaria/genética , Fusarium/genética , Enfermedades de las Plantas
7.
Plant Dis ; 105(2): 264-267, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32791882

RESUMEN

Fusarium oxysporum f. sp. mori, the causal agent of Fusarium wilt of blackberry, was first reported in California and Mexico in 2016. A limited survey of the population revealed this pathogen to be one of the most diverse formae speciales of F. oxysporum. We explored the possibility that strains of F. oxysporum pathogenic to commercial blackberry could also be recovered from wild blackberry (Rubus spp.) in California. For this purpose, wild Rubus species in blackberry nurseries, fruit production fields, and nearby areas were collected between 2017 and 2019. Thirty-four isolates of F. oxysporum were recovered from asymptomatic Rubus armeniacus and Rubus ursinus plants. Based on sequence of the translation elongation factor 1-α, somatic compatibility, and pathogenicity to blackberry, 16 isolates were confirmed as F. oxysporum f. sp. mori. These isolates were associated with three somatic compatibility groups, one of which was first identified in this study. Recovery of the pathogen confirmed that wild blackberry plants can act as a reservoir of inoculum of F. oxysporum f. sp. mori and that it can move from wild blackberry plants to commercial cultivars or vice versa.


Asunto(s)
Fusarium , Rubus , California , México , Enfermedades de las Plantas
8.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33200960

RESUMEN

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Asunto(s)
Fusarium , Fusarium/genética , Filogenia , Enfermedades de las Plantas , Plantas
9.
Plant Dis ; 105(4): 912-918, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33135994

RESUMEN

Fusarium oxysporum f. sp. lactucae, the cause of Fusarium wilt of lettuce, can survive on crop residue in soil. Persistence of the pathogen over time will be influenced by the rate at which residue decomposes. We evaluated the effect of drying and fragmenting crop residue on the rate of decomposition and survival of F. oxysporum f. sp. lactucae. In a controlled experiment that represented optimal drying conditions, fragmenting and oven drying infested lettuce taproots at 30°C significantly reduced the frequency of recovery of the pathogen, compared with untreated tissue. However, in a field experiment, drying infested crop residue on the soil surface prior to incorporation did not significantly reduce survival of F. oxysporum f. sp. lactucae after 1 year. Regardless of treatment, there was not a significant decrease in soil inoculum density between 1 and 12 months after residue was incorporated. In a greenhouse experiment, fragmenting crop residue prior to incorporation in pathogen-free soil resulted in significantly higher inoculum densities of F. oxysporum f. sp. lactucae after 1 year. The increase in inoculum levels was associated with a faster rate of residue decomposition, which may be beneficial in the long run but not where lettuce will be replanted within the next year.


Asunto(s)
Fusarium , Lactuca , Suelo , Microbiología del Suelo
10.
Plant Genome ; 13(3): e20054, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33217217

RESUMEN

Verticillium wilt, a soil-borne disease caused by the fungal pathogen Verticillium dahliae, threatens strawberry (Fragaria × ananassa) production worldwide. The development of resistant cultivars has been a persistent challenge, in part because the genetics of resistance is complex. The heritability of resistance and genetic gains in breeding for resistance to this pathogen have not been well documented. To elucidate the genetics, assess long-term genetic gains, and estimate the accuracy of genomic selection for resistance to Verticillium wilt, we analyzed a genetically diverse population of elite and exotic germplasm accessions (n = 984), including 245 cultivars developed since 1854. We observed a full range of phenotypes, from highly susceptible to highly resistant: < 3% were classified as highly resistant, whereas > 50% were classified as moderately to highly susceptible. Broad-sense heritability estimates ranged from 0.70-0.76, whereas narrow-sense genomic heritability estimates ranged from 0.33-0.45. We found that genetic gains in breeding for resistance to Verticillium wilt have been negative over the last 165 years (mean resistance has decreased over time). We identified several highly resistant accessions that might harbor favorable alleles that are either rare or non-existent in modern populations. We did not observe the segregation of large-effect loci. The accuracy of genomic predictions ranged from 0.38-0.53 among years and whole-genome regression methods. We show that genomic selection has promise for increasing genetic gains and accelerating the development of resistant cultivars in strawberry by shortening selection cycles and enabling selection in early developmental stages without phenotyping.


Asunto(s)
Fragaria , Verticillium , Ascomicetos , Fragaria/genética , Genómica , Enfermedades de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA