Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; : 114536, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39096901

RESUMEN

Monocytic acute myeloid leukemia (AML) responds poorly to current treatments, including venetoclax-based therapy. We conducted in vivo and in vitro CRISPR-Cas9 library screenings using a mouse monocytic AML model and identified SETDB1 and its binding partners (ATF7IP and TRIM33) as crucial tumor promoters in vivo. The growth-inhibitory effect of Setdb1 depletion in vivo is dependent mainly on natural killer (NK) cell-mediated cytotoxicity. Mechanistically, SETDB1 depletion upregulates interferon-stimulated genes and NKG2D ligands through the demethylation of histone H3 Lys9 at the enhancer regions, thereby enhancing their immunogenicity to NK cells and intrinsic apoptosis. Importantly, these effects are not observed in non-monocytic leukemia cells. We also identified the expression of myeloid cell nuclear differentiation antigen (MNDA) and its murine counterpart Ifi203 as biomarkers to predict the sensitivity of AML to SETDB1 depletion. Our study highlights the critical and selective role of SETDB1 in AML with granulo-monocytic differentiation and underscores its potential as a therapeutic target for current unmet needs.

2.
Front Genet ; 15: 1407765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974382

RESUMEN

Preventing, diagnosing, and treating diseases requires accurate clinical biomarkers, which remains challenging. Recently, advanced computational approaches have accelerated the discovery of promising biomarkers from high-dimensional multimodal data. Although machine-learning methods have greatly contributed to the research fields, handling data sparseness, which is not unusual in research settings, is still an issue as it leads to limited interpretability and performance in the presence of missing information. Here, we propose a novel pipeline integrating joint non-negative matrix factorization (JNMF), identifying key features within sparse high-dimensional heterogeneous data, and a biological pathway analysis, interpreting the functionality of features by detecting activated signaling pathways. By applying our pipeline to large-scale public cancer datasets, we identified sets of genomic features relevant to specific cancer types as common pattern modules (CPMs) of JNMF. We further detected COPS5 as a potential upstream regulator of pathways associated with diffuse large B-cell lymphoma (DLBCL). COPS5 exhibited co-overexpression with MYC, TP53, and BCL2, known DLBCL marker genes, and its high expression was correlated with a lower survival probability of DLBCL patients. Using the CRISPR-Cas9 system, we confirmed the tumor growth effect of COPS5, which suggests it as a novel prognostic biomarker for DLBCL. Our results highlight that integrating multiple high-dimensional data and effectively decomposing them to interpretable dimensions unravels hidden biological importance, which enhances the discovery of clinical biomarkers.

3.
Int J Hematol ; 120(2): 186-193, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38702444

RESUMEN

Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-ETO is one of the most common subtypes of AML. Although t(8;21) AML has been classified as favorable-risk, only about half of patients are cured with current therapies. Several genetic abnormalities, including TP53 mutations and deletions, negatively impact survival in t(8;21) AML. In this study, we established Cas9+ mouse models of t(8;21) AML with intact or deficient Tpr53 (a mouse homolog of TP53) using a retrovirus-mediated gene transfer and transplantation system. Trp53 deficiency accelerates the in vivo development of AML driven by RUNX1-ETO9a, a short isoform of RUNX1-ETO with strong leukemogenic potential. Trp53 deficiency also confers resistance to genetic depletion of RUNX1 and a TP53-activating drug in t(8;21) AML. However, Trp53-deficient t(8;21) AML cells were still sensitive to several drugs such as dexamethasone. Cas9+ RUNX1-ETO9a cells with/without Trp53 deficiency can produce AML in vivo, can be cultured in vitro for several weeks, and allow efficient gene depletion using the CRISPR/Cas9 system, providing useful tools to advance our understanding of t(8;21) AML.


Asunto(s)
Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda , Translocación Genética , Proteína p53 Supresora de Tumor , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/etiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/deficiencia , Animales , Ratones , Cromosomas Humanos Par 8/genética , Cromosomas Humanos Par 21/genética , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Proteínas de Fusión Oncogénica/genética
5.
Haematologica ; 109(4): 1107-1120, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37731380

RESUMEN

Acute myeloid leukemia (AML) is a hematologic malignancy that frequently relapses, even if remission can be achieved with intensive chemotherapy. One known relapse mechanism is the escape of leukemic cells from immune surveillance. Currently, there is no effective immunotherapy for AML because of the lack of specific antigens. Here, we aimed to elucidate the association between CD155 and CD112 in AML cell lines and primary AML samples and determine the therapeutic response. Briefly, we generated NK-92 cell lines (NK-92) with modified DNAX-associated molecule 1 (DNAM-1) and T-cell immunoglobulin and ITIM domain (TIGIT), which are receptors of CD155 and CD112, respectively. Analysis of 200 cases of AML indicated that the survival of patients with high expression of CD112 was shorter than that of patients with low expression. NK-92 DNAM-1 exhibited enhanced cytotoxic activity against AML cell lines and primary cells derived from patients with AML. DNAM-1 induction in NK-92 cells enhanced the expression of cytotoxicity-related genes, thus overcoming the inhibitory activity of TIGIT. Between CD155 and CD112, CD112 is an especially important target for natural killer (NK)-cell therapy of AML. Using a xenograft model, we confirmed the enhanced antitumor effect of NK-92 DNAM-1 compared with that of NK-92 alone. We also discovered that CD112 (Nectin-2), an immune checkpoint molecule belonging to the Nectin/Nectin-like family, functions as a novel target of immunotherapy. In conclusion, modification of the DNAM-1/CD112 axis in NK cells may be an effective novel immunotherapy for AML. Furthermore, our findings suggest that the levels of expression of these molecules are potential prognostic markers in AML.


Asunto(s)
Proteínas de Punto de Control Inmunitario , Leucemia Mieloide Aguda , Humanos , Nectinas , Proteínas de Punto de Control Inmunitario/metabolismo , Células Asesinas Naturales , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Receptores Inmunológicos , Tratamiento Basado en Trasplante de Células y Tejidos , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/metabolismo
6.
Nat Commun ; 14(1): 8372, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102116

RESUMEN

ATP-dependent chromatin remodeling SWI/SNF complexes exist in three subcomplexes: canonical BAF (cBAF), polybromo BAF (PBAF), and a newly described non-canonical BAF (ncBAF). While cBAF and PBAF regulate fates of multiple cell types, roles for ncBAF in hematopoietic stem cells (HSCs) have not been investigated. Motivated by recent discovery of disrupted expression of BRD9, an essential component of ncBAF, in multiple cancers, including clonal hematopoietic disorders, we evaluate here the role of BRD9 in normal and malignant HSCs. BRD9 loss enhances chromatin accessibility, promoting myeloid lineage skewing while impairing B cell development. BRD9 significantly colocalizes with CTCF, whose chromatin recruitment is augmented by BRD9 loss, leading to altered chromatin state and expression of myeloid-related genes within intact topologically associating domains. These data uncover ncBAF as critical for cell fate specification in HSCs via three-dimensional regulation of gene expression and illuminate roles for ncBAF in normal and malignant hematopoiesis.


Asunto(s)
Cromatina , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo
7.
Commun Biol ; 6(1): 1294, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129572

RESUMEN

Immunotherapy has attracted considerable attention as a therapeutic strategy for cancers including acute myeloid leukemia (AML). In this study, we found that the development of several aggressive subtypes of AML is slower in Rag2-/- mice despite the lack of B and T lymphocytes, even compared to the immunologically normal C57BL/6 mice. Furthermore, an orally active p53-activating drug shows stronger antileukemia effect on AML in Rag2-/- mice than C57BL/6 mice. Intriguingly, Natural Killer (NK) cells in Rag2-/- mice are increased in number, highly express activation markers, and show increased cytotoxicity to leukemia cells in a coculture assay. B2m depletion that triggers missing-self recognition of NK cells impairs the growth of AML cells in vivo. In contrast, NK cell depletion accelerates AML progression in Rag2-/- mice. Interestingly, immunogenicity of AML keeps changing during tumor evolution, showing a trend that the aggressive AMLs generate through serial transplantations are susceptible to NK cell-mediated tumor suppression in Rag2-/- mice. Thus, we show the critical role of NK cells in suppressing the development of certain subtypes of AML using Rag2-/- mice, which lack functional lymphocytes but have hyperactive NK cells.


Asunto(s)
Células Asesinas Naturales , Leucemia Mieloide Aguda , Animales , Ratones , Ratones Noqueados , Ratones Endogámicos C57BL , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Linfocitos T , Proteínas de Unión al ADN/genética
8.
Blood ; 142(23): 2002-2015, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37738460

RESUMEN

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.


Asunto(s)
Histonas , Leucemia Mieloide Aguda , Animales , Ratones , Histonas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mutación , Metilación , Nucleotidiltransferasas/metabolismo , Leucemia Mieloide Aguda/patología , Inmunidad , Poliploidía
9.
Cell Rep ; 42(9): 113098, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37714156

RESUMEN

Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.


Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacología , Decitabina/uso terapéutico , Azacitidina/farmacología , Azacitidina/uso terapéutico , Antimetabolitos Antineoplásicos/farmacología , Leucemia Mieloide Aguda/patología , Metilación de ADN/genética , ADN , Proteínas Adaptadoras Transductoras de Señales/genética
10.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462944

RESUMEN

Loss-of-function mutations in the lysosomal nucleoside transporter SLC29A3 cause lysosomal nucleoside storage and histiocytosis: phagocyte accumulation in multiple organs. However, little is known about the mechanism by which lysosomal nucleoside storage drives histiocytosis. Herein, histiocytosis in Slc29a3-/- mice was shown to depend on Toll-like receptor 7 (TLR7), which senses a combination of nucleosides and oligoribonucleotides (ORNs). TLR7 increased phagocyte numbers by driving the proliferation of Ly6Chi immature monocytes and their maturation into Ly6Clow phagocytes in Slc29a3-/- mice. Downstream of TLR7, FcRγ and DAP10 were required for monocyte proliferation. Histiocytosis is accompanied by inflammation in SLC29A3 disorders. However, TLR7 in nucleoside-laden splenic monocytes failed to activate inflammatory responses. Enhanced production of proinflammatory cytokines was observed only after stimulation with ssRNAs, which would increase lysosomal ORNs. Patient-derived monocytes harboring the G208R SLC29A3 mutation showed enhanced survival and proliferation in a TLR8-antagonist-sensitive manner. These results demonstrated that TLR7/8 responses to lysosomal nucleoside stress drive SLC29A3 disorders.


Asunto(s)
Histiocitosis , Receptor Toll-Like 7 , Animales , Ratones , Citocinas/genética , Histiocitosis/genética , Mutación/genética , Nucleósidos , Receptor Toll-Like 7/genética , Receptor Toll-Like 8/genética
11.
Cancer Sci ; 114(10): 4032-4040, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37522388

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is one of the most frequently occurring cancers in children and is associated with a poor prognosis. Here, we performed large-scale screening of natural compound libraries to identify potential drugs against T-ALL. We identified three low-molecular-weight compounds (auxarconjugatin-B, rumbrin, and lavendamycin) that inhibited the proliferation of the T-ALL cell line CCRF-CEM, but not that of the B lymphoma cell line Raji in a low concentration range. Among them, auxarconjugatin-B and rumbrin commonly contained a polyenyl 3-chloropyrrol in their chemical structure, therefore we chose auxarconjugatin-B for further analyses. Auxarconjugatin-B suppressed the in vitro growth of five human T-ALL cell lines and two T-ALL patient-derived cells, but not that of adult T-cell leukemia patient-derived cells. Cultured normal T cells were several-fold resistant to auxarconjugatin-B. Auxarconjugatin-B and its synthetic analogue Ra#37 depolarized the mitochondrial membrane potential of CCRF-CEM cells within 3 h of treatment. These compounds are promising seeds for developing novel anti-T-ALL drugs.

12.
FEBS J ; 290(21): 5141-5157, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37500075

RESUMEN

Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica , Leucemia/genética
13.
EMBO Mol Med ; 15(1): e15631, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36453131

RESUMEN

Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in de novo guanine nucleotide synthesis pathway. Although IMPDH inhibitors are widely used as effective immunosuppressants, their antitumor effects have not been proven in the clinical setting. Here, we found that acute myeloid leukemias (AMLs) with MLL-fusions are susceptible to IMPDH inhibitors in vitro. We also showed that alternate-day administration of IMPDH inhibitors suppressed the development of MLL-AF9-driven AML in vivo without having a devastating effect on immune function. Mechanistically, IMPDH inhibition induced overactivation of Toll-like receptor (TLR)-TRAF6-NF-κB signaling and upregulation of an adhesion molecule VCAM1, which contribute to the antileukemia effect of IMPDH inhibitors. Consequently, combined treatment with IMPDH inhibitors and the TLR1/2 agonist effectively inhibited the development of MLL-fusion AML. These findings provide a rational basis for clinical testing of IMPDH inhibitors against MLL-fusion AMLs and potentially other aggressive tumors with active TLR signaling.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Humanos , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Inhibidores Enzimáticos/farmacología , FN-kappa B , Inmunosupresores/uso terapéutico
14.
Cell Mol Life Sci ; 79(9): 473, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941268

RESUMEN

Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.


Asunto(s)
Senescencia Celular , Células Madre Hematopoyéticas , Epigénesis Genética , Hematopoyesis , Células Madre Hematopoyéticas/fisiología
15.
Exp Hematol ; 112-113: 1-8, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35644277

RESUMEN

Transcription factor RUNX1 plays key roles in the establishment and maintenance of the hematopoietic system. Although RUNX1 has been considered a beneficial tumor suppressor, several recent reports have described the tumor-promoting role of RUNX1 in a variety of hematopoietic neoplasms. In this study, we assessed the effect of RUNX1 depletion in multiple human leukemia cell lines using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, and confirmed that RUNX1 is in fact required for sustaining their leukemic proliferation. To achieve efficient RUNX1 inhibition in leukemia cells, we then examined the effect of lipid nanoparticle (LNP)-mediated delivery of RUNX1-targeting small interfering (si)RNA using two tumor-tropic LNPs. The LNPs containing RUNX1-targeting siRNA were efficiently incorporated into myeloid and T-cell leukemia cell lines and patient-derived primary human acute myeloid leukemia (AML) cells, downregulated RUNX1 expression, induced cell cycle arrest and apoptosis, and exhibited the growth-inhibitory effect in them. In contrast, the LNPs were not efficiently incorporated into normal cord blood CD34+ cells, indicating their minimum cytotoxicity. Thus, our study highlights RUNX1 as a potential therapeutic target to inhibit leukemogenesis, and provides the LNP-based siRNA delivery as a promising approach to deplete RUNX1 specifically in leukemia cells.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Línea Celular Tumoral , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia , Liposomas , Nanopartículas , ARN Interferente Pequeño/genética
16.
Cell Rep ; 39(6): 110805, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545056

RESUMEN

Myelodysplastic syndrome (MDS) is a clonal disorder of hematopoietic stem cells (HSCs), characterized by ineffective hematopoiesis and frequent progression to leukemia. It has long remained unresolved how MDS cells, which are less proliferative, inhibit normal hematopoiesis and eventually dominate the bone marrow space. Despite several studies implicating mesenchymal stromal or stem cells (MSCs), a principal component of the HSC niche, in the inhibition of normal hematopoiesis, the molecular mechanisms underlying this process remain unclear. Here, we demonstrate that both human and mouse MDS cells perturb bone metabolism by suppressing the osteolineage differentiation of MSCs, which impairs the ability of MSCs to support normal HSCs. Enforced MSC differentiation rescues the suppressed normal hematopoiesis in both in vivo and in vitro MDS models. Intriguingly, the suppression effect is reversible and mediated by extracellular vesicles (EVs) derived from MDS cells. These findings shed light on the novel MDS EV-MSC axis in ineffective hematopoiesis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Síndromes Mielodisplásicos , Animales , Vesículas Extracelulares/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Síndromes Mielodisplásicos/metabolismo
17.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35132438

RESUMEN

Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.


Asunto(s)
Diferenciación Celular , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Vía de Señalización Wnt/genética , Proteínas de Pez Cebra/metabolismo , Animales , Cartílago/citología , Cartílago/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína del Locus del Complejo MDS1 y EV11/deficiencia , Proteína del Locus del Complejo MDS1 y EV11/genética , Ratones , Ratones Noqueados , Cresta Neural/citología , Cresta Neural/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Cráneo/citología , Cráneo/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , beta Catenina/metabolismo
18.
Cancer Sci ; 113(4): 1182-1194, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35133065

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) is an age-associated phenomenon characterized by clonal expansion of blood cells harboring somatic mutations in hematopoietic genes, including DNMT3A, TET2, and ASXL1. Clinical evidence suggests that CHIP is highly prevalent and associated with poor prognosis in solid-tumor patients. However, whether blood cells with CHIP mutations play a causal role in promoting the development of solid tumors remained unclear. Using conditional knock-in mice that express CHIP-associated mutant Asxl1 (Asxl1-MT), we showed that expression of Asxl1-MT in T cells, but not in myeloid cells, promoted solid-tumor progression in syngeneic transplantation models. We also demonstrated that Asxl1-MT-expressing blood cells accelerated the development of spontaneous mammary tumors induced by MMTV-PyMT. Intratumor analysis of the mammary tumors revealed the reduced T-cell infiltration at tumor sites and programmed death receptor-1 (PD-1) upregulation in CD8+ T cells in MMTV-PyMT/Asxl1-MT mice. In addition, we found that Asxl1-MT induced T-cell dysregulation, including aberrant intrathymic T-cell development, decreased CD4/CD8 ratio, and naïve-memory imbalance in peripheral T cells. These results indicate that Asxl1-MT perturbs T-cell development and function, which contributes to creating a protumor microenvironment for solid tumors. Thus, our findings raise the possibility that ASXL1-mutated blood cells exacerbate solid-tumor progression in ASXL1-CHIP carriers.


Asunto(s)
Hematopoyesis Clonal , Neoplasias , Proteínas Represoras , Animales , Linfocitos T CD8-positivos/metabolismo , Hematopoyesis Clonal/genética , Hematopoyesis/genética , Ratones , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Microambiente Tumoral
19.
Nat Commun ; 13(1): 271, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022428

RESUMEN

Leukemia stem cells (LSCs) in chronic myeloid leukemia (CML) are quiescent, insensitive to BCR-ABL1 tyrosine kinase inhibitors (TKIs) and responsible for CML relapse. Therefore, eradicating quiescent CML LSCs is a major goal in CML therapy. Here, using a G0 marker (G0M), we narrow down CML LSCs as G0M- and CD27- double positive cells among the conventional CML LSCs. Whole transcriptome analysis reveals NF-κB activation via inflammatory signals in imatinib-insensitive quiescent CML LSCs. Blocking NF-κB signals by inhibitors of interleukin-1 receptor-associated kinase 1/4 (IRAK1/4 inhibitors) together with imatinib eliminates mouse and human CML LSCs. Intriguingly, IRAK1/4 inhibitors attenuate PD-L1 expression on CML LSCs, and blocking PD-L1 together with imatinib also effectively eliminates CML LSCs in the presence of T cell immunity. Thus, IRAK1/4 inhibitors can eliminate CML LSCs through inhibiting NF-κB activity and reducing PD-L1 expression. Collectively, the combination of TKIs and IRAK1/4 inhibitors is an attractive strategy to achieve a radical cure of CML.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mieloide/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos/farmacología , Enfermedad Crónica , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología
20.
Sci Rep ; 11(1): 23889, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903756

RESUMEN

Cell behavior is controlled by complex gene regulatory networks. Although studies have uncovered diverse roles of individual genes, it has been challenging to record or control sequential genetic events in living cells. In this study, we designed two cellular chain reaction systems that enable sequential sgRNA activation in mammalian cells using a nickase Cas9 tethering of a cytosine nucleotide deaminase (nCas9-CDA). In these systems, thymidine (T)-to-cytosine (C) substitutions in the scaffold region of the sgRNA or the TATA box-containing loxP sequence (TATAloxP) are corrected by the nCas9-CDA, leading to activation of the next sgRNA. These reactions can occur multiple times, resulting in cellular chain reactions. As a proof of concept, we established a chain reaction by repairing sgRNA scaffold mutations in 293 T cells. Importantly, the results obtained in yeast or in vitro did not match those obtained in mammalian cells, suggesting that in vivo chain reactions need to be optimized in appropriate cellular contexts. Our system may lay the foundation for building cellular chain reaction systems that have a broad utility in the future biomedical research.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN , Edición Génica , Mutación , ARN Guía de Kinetoplastida/genética , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Células HEK293 , Humanos , TATA Box/genética , Timidina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA