Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Obstet Gynecol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969199

RESUMEN

BACKGROUND: While the phenotypic association between anti-Müllerian hormoneand age at menopause has been widely studied, the role of anti-Müllerian hormone in predicting the age at menopause is currently controversial, and the genetic architecture or causal relationships underlying these 2 traits is not well understood. AIM: We aimed to explore the shared genetic architecture between anti-Müllerian hormone and age at menopause, to identify shared pleiotropic loci and genes, and to investigate causal association and potential causal mediators. STUDY DESIGN: Using summary statistics from publicly available genome-wide association studies on anti-Müllerian hormone (N=7049) and age at menopause (N=201,323) in Europeans, we investigated the global genetic architecture between anti-Müllerian hormone and age at menopause through linkage disequilibrium score regression. We employed pleiotropic analysis under composite null hypothesis, Functional Mapping and Annotation of Genetic Associations, multimarker analysis of GenoMic annotation, and colocalization analysis to identify loci and genes with pleiotropic effects. Tissue enrichment analysis based on Genotype-Tissue Expression data was conducted using the Linkage Disequilibrium Score for the specific expression of genes analysis. Functional genes that were shared were additionally identified through summary data-based Mendelian randomization. The relationship between anti-Müllerian hormone and age at menopause was examined through 2-sample Mendelian randomization, and potential mediators were further explored using colocalization and metabolite-mediated analysis. RESULTS: A positive genetic association (correlation coefficient=0.88, P=1.33×10-5) was observed between anti-Müllerian hormone and age at menopause. By using pleiotropic analysis under composite null hypothesis and Functional Mapping and Annotation of Genetic Associations, 42 significant pleiotropic loci were identified that were associated with anti-Müllerian hormone and age at menopause, and 10 of these (rs10734411, rs61913600, rs2277339, rs75770066, rs28416520, rs9796, rs11668344, rs403727, rs6011452, and rs62237617) had colocalized loci. Additionally, 245 significant pleiotropic genes were identified by multimarker analysis of GenoMic annotation. Genetic associations between anti-Müllerian hormone and age at menopause were markedly concentrated in various tissues including whole blood, brain, heart, liver, muscle, pancreas, and kidneys. Further, summary data-based Mendelian randomization analysis revealed 9 genes that may have a causative effect on both anti-Müllerian hormone and age at menopause. A potential causal effect of age at menopause on anti-Müllerian hormone was suggested by 2-sample Mendelian randomization analysis, with very-low-density lipoprotein identified as a potential mediator. CONCLUSION: Our study revealed a shared genetic architecture between anti-Müllerian hormone and age at menopause, providing a basis for experimental investigations and individual therapies to enhance reproductive outcomes. Furthermore, our findings emphasized that relying solely on anti-Müllerian hormone is not sufficient for accurately predicting the age at menopause, and a combination of other factors needs to be considered. Exploring new therapeutics aimed at delaying at the onset of menopause holds promise, particularly when targeting shared genes based on their shared genetic architecture.

2.
N Engl J Med ; 391(8): 722-735, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869931

RESUMEN

BACKGROUND: The effect of a liberal transfusion strategy as compared with a restrictive strategy on outcomes in critically ill patients with traumatic brain injury is unclear. METHODS: We randomly assigned adults with moderate or severe traumatic brain injury and anemia to receive transfusion of red cells according to a liberal strategy (transfusions initiated at a hemoglobin level of ≤10 g per deciliter) or a restrictive strategy (transfusions initiated at ≤7 g per deciliter). The primary outcome was an unfavorable outcome as assessed by the score on the Glasgow Outcome Scale-Extended at 6 months, which we categorized with the use of a sliding dichotomy that was based on the prognosis of each patient at baseline. Secondary outcomes included mortality, functional independence, quality of life, and depression at 6 months. RESULTS: A total of 742 patients underwent randomization, with 371 assigned to each group. The analysis of the primary outcome included 722 patients. The median hemoglobin level in the intensive care unit was 10.8 g per deciliter in the group assigned to the liberal strategy and 8.8 g per deciliter in the group assigned to the restrictive strategy. An unfavorable outcome occurred in 249 of 364 patients (68.4%) in the liberal-strategy group and in 263 of 358 (73.5%) in the restrictive-strategy group (adjusted absolute difference, restrictive strategy vs. liberal strategy, 5.4 percentage points; 95% confidence interval, -2.9 to 13.7). Among survivors, a liberal strategy was associated with higher scores on some but not all the scales assessing functional independence and quality of life. No association was observed between the transfusion strategy and mortality or depression. Venous thromboembolic events occurred in 8.4% of the patients in each group, and acute respiratory distress syndrome occurred in 3.3% and 0.8% of patients in the liberal-strategy and restrictive-strategy groups, respectively. CONCLUSIONS: In critically ill patients with traumatic brain injury and anemia, a liberal transfusion strategy did not reduce the risk of an unfavorable neurologic outcome at 6 months. (Funded by the Canadian Institutes of Health Research and others; HEMOTION ClinicalTrials.gov number, NCT03260478.).


Asunto(s)
Anemia , Lesiones Traumáticas del Encéfalo , Transfusión de Eritrocitos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anemia/sangre , Anemia/etiología , Anemia/terapia , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/terapia , Enfermedad Crítica , Depresión/etiología , Transfusión de Eritrocitos/efectos adversos , Transfusión de Eritrocitos/métodos , Escala de Consecuencias de Glasgow , Hemoglobinas/análisis , Calidad de Vida
3.
J Ovarian Res ; 17(1): 32, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310280

RESUMEN

BACKGROUND: The etiology of premature ovarian insufficiency, that is, the loss of ovarian activity before 40 years of age, is complex. Studies suggest that genetic factors are involved in 20-25% of cases. The aim of this study was to explore the oligogenic basis of premature ovarian insufficiency. RESULTS: Whole-exome sequencing of 93 patients with POI and whole-genome sequencing of 465 controls were performed. In the gene-burden analysis, multiple genetic variants, including those associated with DNA damage repair and meiosis, were more common in participants with premature ovarian insufficiency than in controls. The ORVAL-platform analysis confirmed the pathogenicity of the RAD52 and MSH6 combination. CONCLUSIONS: The results of this study indicate that oligogenic inheritance is an important cause of premature ovarian insufficiency and provide insights into the biological mechanisms underlying premature ovarian insufficiency.


Asunto(s)
Menopausia Prematura , Insuficiencia Ovárica Primaria , Femenino , Humanos , Insuficiencia Ovárica Primaria/genética , Menopausia Prematura/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA