Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 8(41): 38587-38596, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867690

RESUMEN

Platinum(II) and platinum(IV) compounds were prepared by the stereoselective and regioselective reactions of thiophene-derived cyclohexyl diimine C^N^N-ligands with [Pt2Me4(µ-SMe2)2]. Newly synthesized ligands were characterized by NMR spectroscopy and elemental analysis, and Pt(II)/Pt(IV) compounds were characterized by NMR spectroscopy, elemental analysis, high-resolution mass spectrometry, and single-crystal X-ray diffraction. UV-vis absorbance and photoluminescence measurements were performed on newly synthesized complexes, as well as structurally related Pt(II)/Pt(IV) compounds with benzene-derived cyclohexyl diimine ligands, in dichloromethane solution, as solids, and as 5% by weight PMMA-doped films. DFT and TD-DFT calculations were performed, and the results were compared with the observed spectroscopic properties of the newly synthesized complexes. X-ray total scattering measurements and real space pair distribution function analysis were performed on the synthesized complexes to examine the local- and intermediate-range atomic structures of the emissive solid states.

2.
J Synchrotron Radiat ; 30(Pt 6): 1092-1099, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37738031

RESUMEN

In situ X-ray scattering measurements of CsPbX3 (X = Cl, Br, I) nanocrystal formation and halide exchange at NSLS-II beamlines were performed in an automated flow reactor. Total scattering measurements were performed at the 28-ID-2 (XPD) beamline and small-angle X-ray scattering at the 16-ID (LiX) beamline. Nanocrystal structural parameters of interest, including size, size distribution and atomic structure, were extracted from modeling the total scattering data. The results highlight the potential of these beamlines and the measurement protocols described in this study for studying dynamic processes of colloidal nanocrystal synthesis in solution with timescales on the order of seconds.

3.
RSC Adv ; 13(21): 14484-14493, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37188250

RESUMEN

Colloidal covalent organic framework (COF) synthesis enables morphological control of crystallite size and shape. Despite numerous examples of 2D COF colloids with various linkage chemistries, 3D imine-linked COF colloids are more challenging synthetic targets. Here we report a rapid (15 min-5 day) synthesis of hydrated COF-300 colloids ranging in length (251 nm-4.6 µm) with high crystallinity and moderate surface areas (150 m2 g-1). These materials are characterized by pair distribution function analysis, which is consistent with the known average structure for this material alongside different degrees of atomic disorder at different length scales. Additionally, we investigate a series of para-substituted benzoic acid catalysts, finding that 4-cyano and 4-fluoro substituted benzoic acids produce the largest COF-300 crystallites with lengths of 1-2 µm. In situ dynamic light scattering experiments are used to assess time to nucleation in conjunction with 1H NMR model compound studies to probe the impact of catalyst acidity on the imine condensation equilibrium. We observe cationically stabilized colloids with a zeta potential of up to +14.35 mV in benzonitrile as a result of the carboxylic acid catalyst protonating surface amine groups. We leverage these surface chemistry insights to synthesize small COF-300 colloids using sterically hindered diortho-substituted carboxylic acid catalysts. This fundamental study of COF-300 colloid synthesis and surface chemistry will provide new insights into the role of acid catalysts both as imine condensation catalysts and as colloid stabilizing agents.

4.
Chem Sci ; 13(17): 4977-4983, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35655873

RESUMEN

Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid "burst of nucleation" (La Mer, JACS, 1950, 72(11), 4847-4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and 13C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k G) across all three precursors. However, the magnitude of the k G and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results.

5.
Chem Sci ; 13(16): 4555-4565, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35656143

RESUMEN

A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to 10-4 s-1), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (t ind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(µ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.

6.
ACS Omega ; 6(42): 28316-28325, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34723028

RESUMEN

Platinum(II) compounds were synthesized with both chelate cyclometalated ligands and chelate diphosphine ligands. The cyclometalated ligands include phenylpyridine and a benzothiophene-containing ligand. The three new benzothiophene compounds were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HR-MS), and photophysical measurements. In the case of one compound, L1-DPPM, the structure was determined by single crystal X-ray diffraction. The structural coherence of the noncrystalline emissive solid state was measured by X-ray total scattering real space pair distribution function analysis. Quantum yield values of all of the platinum compounds measured in the solid state and in PMMA films were much greater than in solution.

7.
ACS Omega ; 5(41): 26855-26863, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33111011

RESUMEN

Primary amines and benzothiophene-3-carboxaldehyde were reacted to give four large, bulky imine ligands. These imine ligands were reacted with a tetramethyl platinum dimer and by heteroatom-assisted C-H activation, both monometalated compounds and bismetalated compounds were synthesized. In all cases, five-membered platinacycles were formed. The compounds were characterized by NMR spectroscopy, and one bismetalated compound was characterized by single-crystal X-ray diffraction. The UV-vis absorption and emission spectra and the excited-state lifetimes were recorded for these complexes. Density functional theory (DFT) and time-dependent-DFT calculations were performed to aid in the assignment of the absorption and emission spectra of the newly synthesized complexes.

8.
J Am Chem Soc ; 141(1): 431-440, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30512942

RESUMEN

Thermolysis of a pair of dibenzo-7-phosphanorbornadiene compounds is shown to lead to differing behaviors: phosphinidene sulfide release and formation of amorphous P2S. These compounds, tBuP(S)A (1, A = C14H10 or anthracene; 59% isol. yield) and HP(S)A (2; 63%), are available through thionation of tBuPA and the new secondary phosphine HPA (5), prepared from Me2NPA and DIBAL-H in 50% yield. Phosphinidene sulfide [ tBuP═S] transfer is shown to proceed efficiently from 1 to 2,3-dimethyl-1,3-butadiene to form Diels-Alder product 3 with a zero-order dependence on diene. Platinum complex (Ph3P)2Pt(η2- tBuPS) (4, 47%) is also accessed from 1 and structurally characterized. In contrast, heating parent species 2 (3 h, 135 °C) under vacuum instead produces an insoluble, nonvolatile yellow residual material 6 of composition P2S that displays semiconductor properties with an optical band gap of 2.4 eV. Material 6 obtained in this manner from molecular precursor 2 is in a poorly characterized portion of the phosphorus-sulfur phase diagram and has therefore been subjected to a range of spectroscopic techniques to gain structural insight. X-ray spectroscopic and diffraction techniques, including Raman, XANES, EXAFS, and PDF, reveal 6 to have similarities with related compounds including P4S3, Hittorf's violet phosphorus. Various possible structures have been explored as well using quantum chemical calculations under the constraint that each phosphorus atom is trivalent with no terminal sulfide groups, and each sulfur atom is divalent. The structural conclusions are supported by data from phosphorus-31 magic angle spinning (MAS) solid state NMR spectroscopy, bolstering the structural comparisons to other phosphorus-sulfur systems while excluding the formulation of P2S as a simple mixture of P4S3 and phosphorus.


Asunto(s)
Antracenos/química , Fósforo/química , Sulfuros/química , Azufre/química , Color , Modelos Moleculares , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA