Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748750

RESUMEN

Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.


Asunto(s)
Monóxido de Carbono , Modelos Animales de Enfermedad , Animales , Porcinos , Monóxido de Carbono/farmacología , Monóxido de Carbono/metabolismo , Paro Cardíaco/terapia , Paro Cardíaco Extrahospitalario/terapia , Masculino , Reanimación Cardiopulmonar/métodos
2.
Crit Care Med ; 52(8): 1239-1250, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578158

RESUMEN

OBJECTIVES: Quantify the relationship between perioperative anaerobic lactate production, microcirculatory blood flow, and mitochondrial respiration in patients after cardiovascular surgery with cardiopulmonary bypass. DESIGN: Serial measurements of lactate-pyruvate ratio (LPR), microcirculatory blood flow, plasma tricarboxylic acid cycle cycle intermediates, and mitochondrial respiration were compared between patients with a normal peak lactate (≤ 2 mmol/L) and a high peak lactate (≥ 4 mmol/L) in the first 6 hours after surgery. Regression analysis was performed to quantify the relationship between clinically relevant hemodynamic variables, lactate, LPR, and microcirculatory blood flow. SETTING: This was a single-center, prospective observational study conducted in an academic cardiovascular ICU. PATIENTS: One hundred thirty-two patients undergoing elective cardiovascular surgery with cardiopulmonary bypass. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients with a high postoperative lactate were found to have a higher LPR compared with patients with a normal postoperative lactate (14.4 ± 2.5 vs. 11.7 ± 3.4; p = 0.005). Linear regression analysis found a significant, negative relationship between LPR and microcirculatory flow index ( r = -0.225; ß = -0.037; p = 0.001 and proportion of perfused vessels: r = -0.17; ß = -0.468; p = 0.009). There was not a significant relationship between absolute plasma lactate and microcirculation variables. Last, mitochondrial complex I and complex II oxidative phosphorylation were reduced in patients with high postoperative lactate levels compared with patients with normal lactate (22.6 ± 6.2 vs. 14.5 ± 7.4 pmol O 2 /s/10 6 cells; p = 0.002). CONCLUSIONS: Increased anaerobic lactate production, estimated by LPR, has a negative relationship with microcirculatory blood flow after cardiovascular surgery. This relationship does not persist when measuring lactate alone. In addition, decreased mitochondrial respiration is associated with increased lactate after cardiovascular surgery. These findings suggest that high lactate levels after cardiovascular surgery, even in the setting of normal hemodynamics, are not simply a type B phenomenon as previously suggested.


Asunto(s)
Puente Cardiopulmonar , Ácido Láctico , Microcirculación , Mitocondrias , Humanos , Microcirculación/fisiología , Masculino , Estudios Prospectivos , Femenino , Puente Cardiopulmonar/efectos adversos , Ácido Láctico/sangre , Persona de Mediana Edad , Anciano , Mitocondrias/metabolismo , Anaerobiosis/fisiología , Ácido Pirúvico/metabolismo , Ácido Pirúvico/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA