Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 134774, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154681

RESUMEN

Controlling biomolecular-cell interactions is crucial for the design of scaffolds for tissue engineering (TE). Regenerated silk fibroin (RSF) has been extensively used as TE scaffolds, however, RSF showed poor attachment of neuronal cells, such as rat pheochromocytoma (PC12) cells. In this work, amphiphilic peptides containing a hydrophobic isoleucine tail (I3) and laminin or fibronectin derived peptides (IKVAV, PDSGR, YIGSR, RGDS and PHSRN) were designed for promoting scaffold-cell interaction. Three of them (I3KVAV, I3RGDS and I3YIGSR) can self-assemble into nanofibers, therefore, were used to enhance the application of RSF in neuron TE. Live / dead assays revealed that the peptides exhibited negligible cytotoxicity against PC12 cells. The specific interaction between PC12 cells and the peptides were investigate using atomic force microscopy (AFM). The results indicated a synergistic effect in the designed peptides, promoting cellular attachment, proliferation and morphology changes. In addition, AFM results showed that co-assembling peptides I3KVAV and I3YIGSR possesses the best regulation of proliferation and attachment of PC12 cells, consistent with immunofluorescence staining results. Moreover, cell culture with hydrogels revealed that a mixture of peptides I3KVAV and I3YIGSR can also promote 3D neurites outgrowth. The approach of combining two different self-assembling peptides shows great potential for nerve regeneration applications.

2.
Environ Pollut ; 357: 124414, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38908677

RESUMEN

Plastic pollution has reached concerning levels globally, with single-use plastic products (SUPs) comprising at least 50% of plastic waste. This study investigates the physical and chemical degradation of frequently used SUPs, including petroleum-based and bio-based plastics, in natural Northern European coastal weather and marine environments over a three-year period from 2019 to 2022. Addressing a critical knowledge gap, this research was based on a hypothesis that real-world ageing studies on SUPs would produce more accurate time- and process-lines for their transformation from macro-to microplastics than are available today based on the modeling studies more frequently used. The study employs optical examination, mechanical testing, Fourier Transform Infrared (FTIR) spectroscopy, and Gas Chromatography-Mass Spectrometry (GC-MS) to determine and relate physical and chemical changes with time. The results indicate that SUPs undergo significantly faster degradation in natural weather than predicted to date. Photooxidation emerges as the primary degradation pathway for all SUPs, emphasizing the role of light in plastic breakdown. Importantly, physical degradation to microplastics in natural environments is not always associated with significant chemical changes such as breaking chemical bonds. Black SUPs exhibit greater resistance to visible light and ultraviolet radiation than equivalent white and transparent examples. In marine environments, SUPs degrade measurably slower than in air, their degradation slowing with increasing distance from the water surface. Our findings indicate the urgent need for strategies that mitigate the impacts of photo-oxidation of SUPs. Such strategies may include a focus on the removal of post-use SUPs from pavements, roads, beaches, and water surfaces where photo-oxidation is faster than underwater and underground. Preferential use of black SUPs over white or transparent should also be considered.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Tiempo (Meteorología) , Plásticos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Microplásticos , Cromatografía de Gases y Espectrometría de Masas
3.
Cogn Emot ; : 1-17, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625561

RESUMEN

Despite the salient experience of encoding threatening events, these memories are prone to distortions and often non-veridical from encoding to recall. Further, threat has been shown to preferentially disrupt the binding of event details and enhance goal-relevant information. While extensive work has characterised distinctive features of emotional memory, research has not fully explored the influence threat has on temporal memory, a process putatively supported by the binding of event details into a temporal context. Two primary competing hypotheses have been proposed; that threat can impair or enhance temporal memory. We analysed two datasets to assess temporal memory for an in-person haunted house experience. In study 1, we examined the temporal structure of memory by characterising memory contiguity in free recall as a function of individual levels of heart rate as a proxy of threat. In study 2, we replicated marginal findings of threat-related increases in memory contiguity found in study 1. We extended these findings by showing threat-related increases in recency discriminations, an explicit test of temporal memory. Together, these findings demonstrate that threat enhances temporal memory regarding free recall structure and during explicit memory judgments.

4.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496628

RESUMEN

Since the COVID-19 pandemic began in 2020, viral sequencing has documented 131 individual mutations in the viral spike protein across 48 named variants. To determine the ability of vaccine-mediated humoral immunity to keep pace with continued SARS-CoV-2 evolution, we assessed the neutralization potency of sera from 76 vaccine recipients collected after 2 to 6 immunizations against a comprehensive panel of mutations observed during the pandemic. Remarkably, while many individual mutations that emerged between 2020 and 2022 exhibit escape from sera following primary vaccination, few escape boosted sera. However, progressive loss of neutralization was observed across newer variants, irrespective of vaccine doses. Importantly, an updated XBB.1.5 booster significantly increased titers against newer variants but not JN.1. These findings demonstrate that seasonal boosters improve titers against contemporaneous strains, but novel variants continue to evade updated mRNA vaccines, demonstrating the need for novel approaches to adequately control SARS-CoV-2 transmission.

5.
J Orthop Case Rep ; 14(2): 82-87, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38420247

RESUMEN

Introduction: Peri-implant fractures (PIF) reported after cannulated screw and dynamic hip screw fixation historically occur distal to the implant within the subtrochanteric region secondary to the development of a stress riser. Newer implant designs for femoral neck fractures have attempted to combine the benefits of minimally invasive techniques without forgoing rigid angular stability but bring new potential complications. Case Report: We present a case of an intertrochanteric PIF in the setting of a non-displaced femoral neck fracture treated with the DePuy Synthes Femoral Neck System (FNS). Conclusion: We present this case of a unique PIF pattern with the hope of identifying a potential complication associated with the novel FNS. Furthermore, we present a successful treatment option avoiding the need for conversion to hemiarthroplasty.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38239429

RESUMEN

Host cell functions that participate in the pharmacokinetics and pharmacodynamics (PK/PD) of drugs against intracellular pathogen infections are critical for drug efficacy. In this study, we investigated whether macrophage mechanisms of xenobiotic detoxification contribute to the elimination of intracellular Leishmania upon exposure to pentavalent antimonials (SbV). Primary macrophages from patients with cutaneous leishmaniasis (CL) (n=6) were exposed ex vivo to L. V. panamensis infection and SbV, and transcriptomes were generated. Seven metallothionein (MT) genes, potent scavengers of heavy metals and central elements of the mammalian cell machinery for xenobiotic detoxification, were within the top 20 up-regulated genes. To functionally validate the participation of MTs in drug-mediated killing of intracellular Leishmania, tandem knockdown (KD) of MT2-A and MT1-E, MT1-F, and MT1-X was performed using a pan-MT shRNA approach in THP-1 cells. Parasite survival was unaffected in tandem-KD cells, as a consequence of strong transcriptional upregulation of MTs by infection and SbV, overcoming the KD effect. Gene silencing of the metal transcription factor-1 (MTF-1) abrogated expression of MT1 and MT2-A genes, but not ZnT-1. Upon exposure to SbV, intracellular survival of Leishmania in MTF-1KD cells was significantly enhanced. Results from this study highlight the participation of macrophage MTs in Sb-dependent parasite killing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA