RESUMEN
We report on a Kerr-lens mode-locked Tm,Ho-codoped calcium aluminate laser with in-band pumping of the Tm ions by a spatially single-mode 1678 nm Raman fiber laser. The structurally disordered CaGdAlO4 host crystal is also codoped also with the passive Lu ion for additional inhomogeneous line broadening. The Tm,Ho,Lu:CaGdAlO4 laser generates soliton pulses as short as 79 fs at a central wavelength of 2073.6 nm via soft-aperture Kerr-lens mode-locking. The corresponding average output power amounts to 91 mW at a pulse repetition rate of â¼86 MHz. The average output power can be scaled to 842 mW at the expense of slightly longer pulses of 155 fs at 2045.9 nm, which corresponds to a peak power of â¼58 kW. To the best of our knowledge, this represents the first demonstration of an in-band pumped Kerr-lens mode-locked Tm,Ho solid-state laser at â¼2 µm.
RESUMEN
We report on the growth, polarized spectroscopy and first laser operation of an orthorhombic (space group Pnma) Tm3+,Ho3+-codoped gadolinium orthoscandate (GdScO3) perovskite-type crystal. A single crystal of 3.76 at.% Tm, 0.35 at.% Ho:GdScO3 was grown by the Czochralski method. Its polarized absorption and fluorescence properties were studied revealing a broadband emission around 2â µm. The parameters of the Tm3+ â Ho3+ energy transfer was quantified, P28 = 1.30 × 10-22 cm3µs-1, and P71 = 0.99 × 10-23 cm3µs-1, and the thermal equilibrium lifetime was measured to be 3.5â ms. The crystal-field splitting of Tm3+ and Ho3+ multiplets in Cs symmetry sites of the perovskite structure was determined by low-temperature spectroscopy and the mechanism of spectral line broadening is discussed. The continuous-wave Tm,Ho:GdScO3 laser generated 1.16 W at â¼2.1â µm with a slope efficiency of 50.5%, a laser threshold of 184â mW, a linear laser polarization (E || c) and a spatially single-mode output. The Tm,Ho:GdScO3 crystal is promising for broadly tunable and femtosecond mode-locked lasers emitting above 2â µm.
RESUMEN
We present a compact nonlinear compression scheme for the generation of millijoule few-cycle pulses beyond 4 µm wavelength. For this purpose 95â fs pulses at 5 µm from a 1â kHz midwave-IR optical parametric chirped pulse amplifier (OPCPA) are spectrally broadened due to a self-phase modulation in ZnSe. The subsequent compression in a bulk material yields 53â fs pulses with 1.9â mJ energy. The compression succeeds efficiently with only slight beam distortions and an energy throughput of 85%, which results in a peak power of 34â GW. The nonlinear refractive index of ZnSe was derived from the nonlinear compression and self-focusing measurements. Furthermore, we explore to which extent multiphoton absorption affects the nonlinear compression regime.
RESUMEN
We study the polarization-dependent laser performance of a novel, to the best of our knowledge, "mixed" Tm,Ho:CaYGdAlO4 crystal in the continuous-wave (CW) and mode-locked regimes. Both in terms of the CW tunability range (261 nm) and the minimum pulse duration (50 fs at 2078 nm, spectral width of 95 nm) in the mode-locked regime, σ-polarization is superior. With extended inhomogeneous spectral broadening due to structural and compositional disorder, Tm,Ho:CaYGdAlO4 is promising for few-optical-cycle pulse generation around 2 µm.
RESUMEN
We report on thermal, spectroscopic, and laser properties of transparent 5 at.% Tm3+-doped yttria and "mixed" yttria-scandia ceramics fabricated by vacuum sintering at 1750°C using nanoparticles produced by laser ablation. The solid-solution (Tm0.05Y0.698Sc0.252)2O3 ceramic features a broadband emission extending up to 2.3 µm (gain bandwidth, 167â nm) and high thermal conductivity of 4.48 W m-1 K-1. A Tm:Y2O3 ceramic laser generated 812â mW at 2.05 µm with a slope efficiency η of 70.2%. For the Tm:(Y,Sc)2O3 ceramic, the output power was 523â mW at 2.09 µm with η = 44.7%. These results represent record-high slope efficiencies for any parent or "mixed" Tm3+-doped sesquioxide ceramics.
RESUMEN
We report on dispersion management in mid-IR optical parametric chirped pulse amplifiers (OPCPA) aiming for high-energy few-cycle pulses beyond 4 µm. The available pulse shapers in this spectral region limit the feasibility of sufficient higher-order phase control. Intending the generation of high energy pulses at 12 µm via DFG driven by the signal and idler pulses of a midwave-IR OPCPA, we introduce alternative approaches for mid-IR pulse shaping, namely a germanium-prism pair and a sapphire-prism Martinez compressor. Furthermore, we explore the limits of bulk compression in Si and Ge for multi-mJ pulse energies.
RESUMEN
We report on the first, to the best of our knowledge, laser operation on the 4I11/2 â 4I13/2 transition of erbium-doped disordered calcium lithium niobium gallium garnet (CLNGG) crystals with broadband mid-infrared emission properties. A 41.4â at.% Er:CLNGG continuous-wave laser generated 292â mW at 2.80â µm with 23.3% slope efficiency and a laser threshold of 209â mW. Er3+ ions in CLNGG feature inhomogeneously broadened spectral bands (σSE = 1.79 × 10-21â cm2 at 2.79â µm; emission bandwidth, 27.5â nm), a large luminescence branching ratio for the 4I11/2 â 4I13/2 transition of 17.9%, and a favorable ratio of the 4I11/2 and 4I13/2 lifetimes, exhibiting values of 0.34â ms and 1.17â ms (for 41.4â at.% Er3+), respectively.
RESUMEN
Pulses as short as 44 fs (6 optical cycles) with a spectral width of 120 nm are generated from a mode-locked solid-state laser near 2 µm employing an orthorhombic Tm:GdScO3 perovskite crystal. The average power amounts to 188 mW at a repetition rate of â¼77.6 MHz. The strong inhomogeneous line broadening in GdScO3 suggests optimum conditions for few-optical-cycle pulse generation of rare-earth ion doped GdScO3 bulk lasers.
RESUMEN
We report on a semiconductor saturable absorber mirror mode-locked Tm:(Lu,Sc)2O3 ceramic laser in-band pumped by a Raman fiber laser at 1627 nm. The nonlinear refractive index (n2) of the Tm:(Lu,Sc)2O3 ceramic has been measured to be 4.66 × 10-20 m2/W at 2000 nm. An average output power up to 1.02 W at 2060 nm is achieved for transform-limited 280-fs pulses at a repetition rate of 86.5 MHz, giving an optical efficiency with respect to the absorbed pump power of 36.4%. Pulses as short as 66 fs at 2076 nm are produced at the expense of output power (0.3 W), corresponding to a spectral bandwidth of 69 nm. The present work reveals the potential of Tm3+-doped sesquioxide transparent ceramics for power scaling of femtosecond mode-locked bulk lasers emitting in the 2-µm spectral range.
RESUMEN
We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at â¼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.
RESUMEN
We report on high-energy, few-cycle pulse generation in the long-wave infrared spectral region via difference-frequency generation (DFG) in GaSe and AgGaSe2 nonlinear crystals. The DFG is driven by the signal at 3.5 µm and idler at 5 µm of a high-power mid-wave infrared optical parametric chirped pulse amplification (OPCPA) system operating at a 1-kHz repetition rate. The DFG pulses contain up to 17 µJ of energy and cover a spectrum from 8.5 µm to 14.5 µm. They are generated with a conversion efficiency of 2.1 %. Compression results in 10.2-µJ pulses with sub-150-fs duration, corresponding to less than four optical cycles.
RESUMEN
The transfer of electronic excitations from Cr2+ to Fe2+ ions in co-doped epitaxially grown ZnSe is studied by time-resolved photoluminescence (PL) spectroscopy with unprecedented sub-10â ns time resolution. Upon excitation of Cr2+ ions by a picosecond pulse at 2.05â µm wavelength, PL from Fe2+ ions displays a delayed onset and a retarded decay in comparison to Fe2+ PL directly excited at 3.24â µm. We measure an extremely rapid 60â ns buildup of the Fe2+ luminescence, which is followed by a slower relaxation on the few micrometer scale. The experimental results are analyzed in the framework of Förster radiationless resonant energy transfer. Directly connecting to the work of Fedorov et al. [Opt. Mater. Express9, 2340 (2019)10.1364/OME.9.002340], the 60-ns buildup time of energy transfer is found to correspond to a Cr2+-Fe2+ distance of 0.95â nm, close to the length of the space diagonal of the ZnSe unit cell. This result demonstrates a significant density of spatially correlated Cr2+-Fe2+ ion pairs at short distance, in parallel to ions with a random distribution at a larger mutual separation.
RESUMEN
A Tm,Ho:CALGO laser passively mode-locked by a GaSb-based SESAM generated pulses as short as 52 fs at a central wavelength of 2015 nm with a broad spectral bandwidth of 82â nm (full width at half maximum) owing to the combined gain profiles of both dopants for σ-polarized light. The average output power reached 376â mW at a repetition rate of 85.65â MHz. In the continuous-wave regime, the laser was power scaled up to 1.01 W at 2080.6 nm with a slope efficiency of 32.0%, a laser threshold of 155 mW and π-polarized emission. Polarized spectroscopic properties of Ho3+ ions in singly doped and codoped CALGO crystals were revisited to explain the observed laser performance.
RESUMEN
We present a tunable, high-energy optical parametric chirped pulse amplification system with a front-end based on a femtosecond Cr:ZnS laser. By taking advantage of the broad emission spectrum of the femtosecond Cr:ZnS master oscillator, we are able to directly seed the holmium-based pump around 2 µm. At the same time, the signal pulses for the parametric process are generated via Raman self-frequency shifting of the red end of the spectrum centered at 2.4 µm. The solitons, generated in a fluoride fiber, are tunable over the wavelength range between 2.8 and 3.2 µm. The optical parametric amplifier operates at a 1 kHz repetition rate, and consists of two stages equipped with ZGP as nonlinear crystal. The generated idler pulses are tunable between 5.4 and 6.8 µm with a pulse energy of up to 400 µJ. Dispersion management using bulk material stretching and compression in combination with precise phase shaping prior to amplification enables idler pulses of a sub-100 fs duration, translating into a peak power as high as 4 GW.
RESUMEN
Sub-100 fs pulse generation from a passively mode-locked Tm,Ho-codoped cubic multicomponent disordered garnet laser at â¼2 µm is demonstrated. A single-walled carbon nanotube saturable absorber is implemented to initiate and stabilize the soliton mode-locking. The Tm,Ho:LCLNGG (lanthanum calcium lithium niobium gallium garnet) laser generated pulses as short as 63 fs at a central wavelength of 2072.7 nm with an average output power of 63 mW at a pulse repetition rate of â¼102.5 MHz. Higher average output power of 121 mW was obtained at the expense of longer pulse duration (96 fs) at 2067.6 nm using higher output coupling. To the best of our knowledge, this is the first report on mode-locked operation of the Tm,Ho:LCLNGG crystal.
RESUMEN
We report on the first sub-100 fs mode-locked laser operation of a Tm3+-doped disordered calcium lithium tantalum gallium garnet (Tm:CLTGG) crystal. Soliton mode-locking was initiated and stabilized by a transmission-type single-walled carbon nanotube saturable absorber. Pulses as short as 69 fs were achieved at a central wavelength of 2010.4 nm with an average power of 28 mW at a pulse repetition rate of â¼87.7 MHz. In the sub-100 fs regime, the maximum average output power amounted to 103 mW.
RESUMEN
High-energy few-ps pulses from a Ho:YLF chirped pulse amplifier operating at a 1 kHz repetition rate are compressed in a two-stage arrangement to sub-90-fs duration. The energy of the compressed pulses is more than 20 mJ at an average power of 20 W. In the first stage, the duration of the 2.8 ps, 40 mJ pulses at 2.05 µm wavelength was reduced to 1.4 ps by using nonlinear propagation in air. Subsequently, the pulses were further compressed to 86 fs after spectral broadening in a 3-m-long Kr-filled stretched flexible hollow-core fiber. The high photon flux, peak power, and excellent beam quality and stability make this light source highly attractive for fs pulse generation in the extreme ultraviolet (XUV) to x-ray spectral range for time-resolved XUV spectroscopy or measurements of structural dynamics in solids.
RESUMEN
Kerr-lens mode-locked solid-state laser operation at â¼2µm is investigated. Using a Tm3+-doped (Lu,Sc)2O3 "mixed" sesquioxide ceramic as a gain medium, pulses as short as 58 fs are generated at â¼2081nm via soft-aperture Kerr-lens mode locking. The average output power amounts to 220 mW at a pulse repetition rate of 84.8 MHz. The emitted spectrum at the long-wavelength wing extends to >2.2µm which is attributed to vibronic transitions of the Tm3+ ions. The latter is found to be essential for generating pulses with durations in the 50 fs range.
RESUMEN
We report on sub-50 fs pulse generation from a passively mode-locked (ML) Tm,Ho-codoped crystalline laser operating in a 2 µm spectral region. A ${\rm Tm},{\rm Ho}{:}{\rm Ca}({\rm Gd},{\rm Lu}){{\rm AlO}_4}$ laser delivers pulses as short as 46 fs at 2033 nm with an average power of 121 mW at a pulse repetition rate of ${\sim}{78}\;{\rm MHz}$ employing a semiconductor saturable absorber mirror as a saturable absorber. To the best of our knowledge, this result represents the shortest pulses ever generated from a Tm- and/or Ho-based solid-state laser. Polarization switching in the anisotropic gain material is observed in the ML regime without any polarization selection elements which is essential for the shortest pulses.
RESUMEN
A compact mid-wavelength infrared (MWIR) optical parametric chirped pulse amplification (OPCPA) system generates sub-150 fs pulses at wavelengths from 5.4 to 6.8 µm with >400µJ energy at a 1 kHz repetition rate. A femtosecond Cr:ZnS master oscillator emitting 40 fs pulses at 2.4 µm seeds both a Ho:YLF regenerative amplifier and a two-stage OPCPA based on ZnGeP2 crystals. The 2.05 µm few-picosecond pump pulses from the Ho:YLF amplifier have an energy of 13.4 mJ. Seed pulses for the OPCPA are generated by soliton self-frequency shifting in a fluoride fiber and are tunable between 2.8 and 3.25 µm with a sub-100 fs duration and few-nanojoule energy. The intense MWIR pulses hold strong potential for applications in ultrafast mid-infrared nonlinear optics and spectroscopy.