Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38847906

RESUMEN

Cardiorenal syndrome (CRS) due to right ventricular (RV) failure is a disease entity emerging as a key indicator of morbidity and mortality. The multifactorial aspects of CRS and the left-right ventricular interdependence complicate the link between RV failure and renal function. RV failure has a direct pathophysiological link to renal dysfunction by leading to systemic venous congestion in certain circumstances and low cardiac output in other situations, both leading to impaired renal perfusion. Indeed, renal dysfunction is known to be an independent predictor of mortality in patients with pulmonary arterial hypertension (PAH) and RV failure. Thus, it is important to further understand the interaction between the RV and renal function. RV adaptation is critical to long-term survival in patients with PAH. The RV is also known for its remarkable capacity to recover once the aggravating factor is addressed or mitigated. However, less is known about the renal potential for recovery following the resolution of chronic RV failure. In this review, we provide an overview of the intricate relationship between RV dysfunction and the subsequent development of CRS, with a particular emphasis on PAH. Additionally, we summarize potential RV-targeted therapies and their potential beneficial impact on renal function.

2.
Am J Med ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574795

RESUMEN

BACKGROUND: Despite significant morbidity and mortality related to atherosclerotic cardiovascular disease, to date, most major clinical trials studying the effects of statin therapy have excluded older adults. The objective of this analysis was to evaluate the effect of initiating statin therapy on incident dementia and mortality among individuals 75 years of age or older across the complete spectrum of kidney function. METHODS: We conducted a retrospective cohort study of 640,191 VA health system patients who turned 75 years of age between 2000 and 2018. Patients on statin therapy received the medication for an average of 6.3 years (standard deviation 4.6 years). The primary outcome of interest included incident dementia diagnosis during the study period. The secondary outcome was all-cause mortality. Cox proportional hazard analysis was used to evaluate the adjusted association of statin initiation with these outcomes. RESULTS: There was a higher rate of incident dementia in the No Statin group (4.7%) vs the Statin group (3.2%). Additionally, we observed a 22% all-cause mortality benefit associated with statin therapy. We did not observe a treatment effect with respect to primary or secondary outcomes across varying levels of kidney function. CONCLUSION: This large cohort study did not reveal an association between the initiation of statin therapy and incident dementia. A survival benefit was seen in statin users compared with nonusers. Prospective studies in more diverse populations including older adults will be needed to verify these findings.

3.
Nat Commun ; 14(1): 1460, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928085

RESUMEN

Resolving the electronic structure of a single atom within a molecule is of fundamental importance for understanding and predicting chemical and physical properties of functional molecules such as molecular catalysts. However, the observation of the orbital signature of an individual atom is challenging. We report here the direct identification of two adjacent transition-metal atoms, Fe and Co, within phthalocyanine molecules using high-resolution noncontact atomic force microscopy (HR-AFM). HR-AFM imaging reveals that the Co atom is brighter and presents four distinct lobes on the horizontal plane whereas the Fe atom displays a "square" morphology. Pico-force spectroscopy measurements show a larger repulsion force of about 5 pN on the tip exerted by Co in comparison to Fe. Our combined experimental and theoretical results demonstrate that both the distinguishable features in AFM images and the variation in the measured forces arise from Co's higher electron orbital occupation above the molecular plane. The ability to directly observe orbital signatures using HR-AFM should provide a promising approach to characterizing the electronic structure of an individual atom in a molecular species and to understand mechanisms of certain chemical reactions.

4.
ACS Appl Mater Interfaces ; 13(35): 42005-42013, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34427422

RESUMEN

A passive icephobic coating (τice < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1-100 µm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice < 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly(tetramethylene oxide) to investigate performance drivers.

5.
Langmuir ; 34(27): 8075-8080, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29897774

RESUMEN

We demonstrate rapid [∼mm3/(h·L)] organic ligand-free self-assembly of three-dimensional, >50 µm single-domain microassemblies containing up to 107 individual aligned nanoparticles through a scalable aqueous process. Organization and alignment of aqueous solution-dispersed nanoparticles are induced by decreasing their pH-dependent surface charge without organic ligands, which could be temperature-sensitive or infrared light absorbing. This process is exhibited by transforming both dispersed iron oxide hydroxide nanorods and lithium yttrium fluoride nanoparticles into high packing density microassemblies. The approach is generalizable to nanomaterials with pH-dependent surface charge (e.g., oxides, fluorides, and sulfides) for applications requiring long-range alignment of nanostructures as well as high packing density.

6.
Nat Commun ; 8: 15642, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28555621

RESUMEN

Drop drying and deposition phenomena reveal a rich interplay of fundamental science and engineering, give rise to fascinating everyday effects (coffee rings), and influence technologies ranging from printing to genotyping. Here we investigate evaporation dynamics, morphology, and deposition patterns of drying lyotropic chromonic liquid crystal droplets. These drops differ from typical evaporating colloidal drops primarily due to their concentration-dependent isotropic, nematic, and columnar phases. Phase separation occurs during evaporation, and in the process creates surface tension gradients and significant density and viscosity variation within the droplet. As a result, the drying multiphase drops exhibit different convective currents, drop morphologies, and deposition patterns (coffee-rings).

7.
J Mol Model ; 22(9): 199, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27491848

RESUMEN

The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

8.
J Neurosci ; 35(49): 16282-94, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26658876

RESUMEN

The chromosome 15q13.3 microdeletion is a pathogenic copy number variation conferring epilepsy, intellectual disability, schizophrenia, and autism spectrum disorder (ASD). We generated mice carrying a deletion of 1.2 Mb homologous to the 15q13.3 microdeletion in human patients. Here, we report that mice with a heterozygous deletion on a C57BL/6 background (D/+ mice) demonstrated phenotypes including enlarged/heavier brains (macrocephaly) with enlarged lateral ventricles, decreased social interactions, increased repetitive grooming behavior, reduced ultrasonic vocalizations, decreased auditory-evoked gamma band EEG, and reduced event-related potentials. D/+ mice had normal body weight, activity levels, sensory gating, and cognitive abilities and no signs of epilepsy/seizures. Our results demonstrate that D/+ mice represent ASD-related phenotypes associated with 15q13.3 microdeletion syndrome. Further investigations using this chromosome-engineered mouse model may uncover the common mechanism(s) underlying ASD and other neurodevelopmental/psychiatric disorders representing the 15q13.3 microdeletion syndrome, including epilepsy, intellectual disability, and schizophrenia. SIGNIFICANCE STATEMENT: Recently discovered pathologic copy number variations (CNVs) from patients with neurodevelopmental/psychiatric disorders show very strong penetrance and thus are excellent candidates for mouse models of disease that can mirror the human genetic conditions with high fidelity. A 15q13.3 microdeletion in humans results in a range of neurodevelopmental/psychiatric disorders, including epilepsy, intellectual disability, schizophrenia, and autism spectrum disorder (ASD). The disorders conferred by a 15q13.3 microdeletion also have overlapping genetic architectures and comorbidity in other patient populations such as those with epilepsy and schizophrenia/psychosis, as well as schizophrenia and ASD. We generated mice carrying a deletion of 1.2 Mb homologous to the 15q13.3 microdeletion in human patients, which allowed us to investigate the potential causes of neurodevelopmental/psychiatric disorders associated with the CNV.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/patología , Trastornos de los Cromosomas/fisiopatología , Discapacidad Intelectual/fisiopatología , Convulsiones/fisiopatología , Animales , Ansiedad/etiología , Aprendizaje por Asociación/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 15/genética , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Potenciales Evocados/fisiología , Femenino , Expresión Génica/fisiología , Aseo Animal/fisiología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Relaciones Interpersonales , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pilocarpina/farmacología , Convulsiones/genética , Convulsiones/patología , Olfato/fisiología , Vocalización Animal/fisiología
9.
Soft Matter ; 11(34): 6747-54, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26171829

RESUMEN

This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter.


Asunto(s)
Cristales Líquidos/química , Movimiento (Física) , Emulsiones , Hidrodinámica
10.
Stem Cells ; 32(9): 2454-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24806094

RESUMEN

In the postnatal hippocampus, newly generated neurons contribute to learning and memory. Disruptions in neurogenesis and neuronal development have been linked to cognitive impairment and are implicated in a broad variety of neurological and psychiatric disorders. To identify putative factors involved in this process, we examined hippocampal gene expression alterations in mice possessing a heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha heterozygous knockout gene (CaMK2α-hKO), an established model of cognitive impairment that also displays altered neurogenesis and neuronal development. Using this approach, we identified gastrin-releasing peptide (GRP) as the most dysregulated gene. In wild-type mice, GRP labels NeuN-positive neurons, the lone exception being GRP-positive, NeuN-negative cells in the subgranular zone, suggesting GRP expression may be relevant to neurogenesis and/or neuronal development. Using a model of in vitro hippocampal neurogenesis, we determined that GRP signaling is essential for the continued survival and development of newborn neurons, both of which are blocked by transient knockdown of GRP's cognate receptor (GRPR). Furthermore, GRP appears to negatively regulate neurogenesis-associated proliferation in neural stem cells both in vitro and in vivo. Intracerebroventricular infusion of GRP resulted in a decrease in immature neuronal markers, increased cAMP response element-binding protein (CREB) phosphorylation, and decreased neurogenesis. Despite increased levels of GRP mRNA, CaMK2α-hKO mutant mice expressed reduced levels of GRP peptide. This lack of GRP may contribute to the elevated neurogenesis and impaired neuronal development, which are reversed following exogenous GRP infusion. Based on these findings, we hypothesize that GRP modulates neurogenesis and neuronal development and may contribute to hippocampus-associated cognitive impairment.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Hipocampo/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Animales , Modelos Animales de Enfermedad , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Transducción de Señal
11.
Nanotechnology ; 24(42): 424001, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24067266

RESUMEN

A high capacity, electrochemically stable, nanostructured Sn electrode for Li ion battery anodes is described. This electrode utilizes a rigid, electrically conductive, nanoporous carbon aerogel scaffold by incorporating tin acetate, Sn(CH3COO)2, into the scaffold pore volume through melt infusion. Incorporation of the Sn(CH3COO)2 by melt infusion ensures a chemically stable contact with the scaffold. The mechanical rigidity of the pore volume confines the Sn to nanometer dimensions without sintering, leading to stable cycling. Separation of the synthesis of the scaffold from the loading with Sn(CH3COO)2 permits optimized division of the scaffold pore volume for expansion and electrolyte access during reaction with Li. Using this design, an electrode based on an aerogel with a 5 nm mode pore size was cycled over 300 times without degradation. In addition, after subtracting the contribution from the carbon scaffold, the capacity exceeded the theoretical capacity for Sn, due to an oxidation reaction occurring at 1.2 V. This excess capacity may be related to the solid-solid or solid-electrolyte interfaces in the electrode, possibly representing a new reversible Li ion reaction.

12.
Bipolar Disord ; 15(4): 405-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23560889

RESUMEN

OBJECTIVES: There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. METHODS: Behaviors of calcium/calmodulin-dependent protein kinase II alpha (α-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. RESULTS: The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal α-CaMKII protein levels was also found in both models. CONCLUSIONS: Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the underlying pathophysiologies in epilepsy and bipolar disorder/schizophrenia are strikingly similar.


Asunto(s)
Síntomas Conductuales , Trastorno Bipolar , Calbindina 2/metabolismo , Giro Dentado , Epilepsia , Esquizofrenia , Animales , Síntomas Conductuales/metabolismo , Síntomas Conductuales/fisiopatología , Biomarcadores/metabolismo , Trastorno Bipolar/metabolismo , Trastorno Bipolar/patología , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/psicología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Giro Dentado/patología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Epilepsia/metabolismo , Epilepsia/patología , Epilepsia/fisiopatología , Epilepsia/psicología , Ratones , Agonistas Muscarínicos/farmacología , Pilocarpina/farmacología , Esquizofrenia/metabolismo , Esquizofrenia/patología , Esquizofrenia/fisiopatología
13.
J Phys Chem A ; 117(18): 3771-6, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23586479

RESUMEN

Reversible benzene dicarboxylate/2-bromobenzene dicarboxylate ligand exchange has been studied in the cubic metal-organic framework MOF-5. Significant exchange (up to ∼50%), with continuous compositional variation, was observed using ex-situ (1)H NMR following treatment over ∼6 h at ∼85 °C in 10-40 mM ligand solutions. Exchange occurred without significant structural degradation as characterized by X-ray diffraction, nitrogen adsorption, and scanning electron microscopy. Solid-state (13)C NMR was used to show that exchanged ligands were incorporated into the framework lattice and not simply adsorbed within the pores. Exchange was found to be sensitive to the small free energy changes caused by the ligand concentration in the exchanging solution indicating that exchange is energetically nearly degenerate. This demonstration of reversible, nearly isoenergetic exchange indicates that mixed ligand MOFs could be developed as dynamic combinatorial chemical systems.

14.
J Phys Chem B ; 117(12): 3280-6, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23442105

RESUMEN

Naturally occurring cellulose is crystalline as a consequence of the strong interactions between the glucan chains that comprise it and therefore is insoluble in most solvents. One of the few solvent systems able to dissolve cellulose is lithium chloride (LiCl) dissolved in N,N-dimethylacetamide (DMA). By an integrated application of all-atom molecular dynamics (MD) simulations, reaction path optimization, free-energy calculations, and a force-matching analysis of coarse-grained atomistic simulations, we establish that DMA-mediated preferential interactions of Li(+) cations and Cl(-) anions with glucan chains enable cellulose dissolution in LiCl/DMA. The relatively weak solvation of Li(+), Cl(-), and glucan chains by DMA results in strong effective interactions of Li(+) and Cl(-) ions with the glucans, leading to cellulose dissolution. The small size of the Li(+) cations allows them to strongly couple to multiple interaction sites on the glucan chains of cellulose, including the spatially restricted regions around the ether linkages connecting neighboring glucose residues. Li(+) cations were thus identified as the main component responsible for driving cellulose dissolution. The mechanism for explaining the solubility of cellulose in the LiCl/DMA system deduced from the analysis of atomistic-scale simulations conducted in this work is also consistent with most of the empirical observations related to cellulose dissolution in salt/amide solvent systems.


Asunto(s)
Acetamidas/química , Celulosa/química , Glucanos/química , Cloruro de Litio/química , Amidas/química , Iones/química , Simulación de Dinámica Molecular , Sales (Química)/química , Solubilidad
15.
J Am Chem Soc ; 134(29): 11880-3, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22738173

RESUMEN

This communication describes the synthesis of Pt-M (M = Au, Ni, Pd) icosahedral nanocrystals based on the gas reducing agent in liquid solution method. Both CO gas and organic surface capping agents play critical roles in stabilizing the icosahedral shape with {111} surfaces. Among the Pt-M alloy icosahedral nanocrystals generated, Pt(3)Ni had an impressive ORR specific activity of 1.83 mA/cm(2)(Pt) and 0.62 A/mg(Pt). Our results further show that the area-specific activity of icosahedral Pt(3)Ni catalysts was about 50% higher than that of the octahedral Pt(3)Ni catalysts (1.26 mA/cm(2)(Pt)), even though both shapes are bound by {111} facets. Density functional theory calculations and molecular dynamics simulations indicate that this improvement may arise from strain-induced electronic effects.

16.
Eur J Neurosci ; 36(5): 2597-608, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22697179

RESUMEN

SREB2/GPR85, a member of the super-conserved receptor expressed in brain (SREB) family, is the most conserved G-protein-coupled receptor in vertebrate evolution. Previous human and mouse genetic studies have indicated a possible link between SREB2 and schizophrenia. SREB2 is robustly expressed in the hippocampal formation, especially in the dentate gyrus, a structure with an established involvement in psychiatric disorders and cognition. However, the function of SREB2 in the hippocampus remains elusive. Here we show that SREB2 regulates hippocampal adult neurogenesis, which impacts on cognitive function. Bromodeoxyuridine incorporation and immunohistochemistry were conducted in SREB2 transgenic (Tg, over-expression) and knockout (KO, null-mutant) mice to quantitatively assay adult neurogenesis and newborn neuron dendritic morphology. Cognitive responses associated with adult neurogenesis alteration were evaluated in SREB2 mutant mice. In SREB2 Tg mice, both new cell proliferation and new neuron survival were decreased in the dentate gyrus, whereas an enhancement of new neuron survival occurred in SREB2 KO mouse dentate gyrus. Doublecortin staining revealed dendritic morphology deficits of newly generated neurons in SREB2 Tg mice. In a spatial pattern separation task, SREB2 Tg mice displayed a decreased ability to discriminate spatial relationships, whereas SREB2 KO mice had enhanced abilities in this task. Additionally, SREB2 Tg and KO mice had reciprocal phenotypes in a Y-maze working memory task. Our results indicate that SREB2 is a negative regulator of adult neurogenesis and consequential cognitive functions. Inhibition of SREB2 function may be a novel approach to enhance hippocampal adult neurogenesis and cognitive abilities to ameliorate core symptoms of psychiatric patients.


Asunto(s)
Hipocampo/fisiología , Aprendizaje , Memoria , Neurogénesis , Receptores Acoplados a Proteínas G/fisiología , Animales , Proliferación Celular , Supervivencia Celular , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Riesgo , Esquizofrenia/epidemiología
17.
J Phys Chem B ; 116(28): 8074-83, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22725724

RESUMEN

A Staggered LATtice (SLAT) model is developed for modeling cellulose microfibrils. The simple representation of molecular packing and interactions employed in SLAT allows simulations of structure fluctuations and phase transition of cellulose microfibrils at sufficiently long and large scales for comparison with experiments. Glucan chains in the microfibril are modeled as connected monomers, each corresponding to a cellobiose subunit, and the surrounding space around the cellulose is composed of solvent cells. Interaction parameters of monomer-monomer interactions were parametrized based on the results of atomistic molecular dynamics simulations. The monomer-solvent interaction was optimized to give a melting temperature of ∼695 K for the 36-glucan chain model cellulose microfibril, which is consistent with the estimation based on experimental data. Monte Carlo simulations of the SLAT model also capture experimentally measured X-ray diffraction patterns of cellulose as a function of temperature, including the region of melting transition, as well as predict the highly flexible regions in the microfibril. Beyond the diameter of ∼3 nm, we found that melting temperature of the cellulose microfibril is not significantly shifted by changing the thickness. On the other hand, a slight decrease in the degree of polymerization of glucan chains is shown to enhance structure fluctuations through the ends of glucan chains, i.e., the defect sites, and thereby significantly reduce the melting temperature. Analysis of the sizes, densities, and lifetimes of defect structures in the microfibril indicates a significant extent of fluctuations on the surfaces even at room temperature and that defect statistics are strong but distinct functions of temperature and solvent quality. The SLAT model is the first of its kind for simulating cellulosic materials, and this work shows that it can be used to incorporate information obtained from atomistic simulations and experimental data to enable the aforementioned findings through computation.


Asunto(s)
Celulosa/química , Glucanos/química , Microfibrillas/química , Modelos Biológicos , Polimerizacion , Termodinámica
18.
Phys Chem Chem Phys ; 14(23): 8425-30, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22510706

RESUMEN

The entropic driving forces of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) are investigated via molecular dynamics simulations and the two-phase thermodynamic model. An atomistic model of cellulose was simulated at a dissociated state and a microfibril state to represent dissolution. The calculated values of entropy and internal energy changes between the two states inform the interplay of energetic and entropic driving forces in cellulose dissolution. In both water and BmimCl, we found that the entropy associated with the solvent degrees of freedom (DOF) decreases upon cellulose dissolution. However, solvent entropy reduction in BmimCl is much smaller than that in water and counteracts the entropy gain from the solute DOF to a much lesser extent. Solvent entropy reduction in water also plays a major role in making the free energy change of cellulose dissolution unfavorable at room temperature. In BmimCl, the interaction energies between solvent molecules and glucan chains and the total entropy change both contribute favorably to the dissolution free energy of cellulose. Calculations at different temperatures in the two solvents indicate that changes in total internal energy are a good indicator of the sign of the free energy change of cellulose dissolution.


Asunto(s)
Celulosa/química , Imidazoles/química , Agua/química , Entropía , Glucanos/química , Líquidos Iónicos/química , Temperatura
19.
Dalton Trans ; 41(18): 5458-60, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22406684

RESUMEN

Sodalite zeolitic imidazolate frameworks containing Co (ZIF-67) and Zn (ZIF-8) were synthesized at room temperature under aqueous conditions in 10 min. A trialkylamine deprotonated the 2-methylimidazole ligand and nucleated the frameworks. Furthermore, the ligand acted as a structure directing agent in place of an organic solvent.

20.
J Phys Chem B ; 115(46): 13433-40, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21950594

RESUMEN

Cellulose is present in biomass as crystalline microfibrils held together by a complex network of intermolecular interactions making it difficult to initiate its hydrolysis and conversion to fuels. While cellulose is insoluble in water and most organic solvents, complete dissolution of cellulose can be achieved in certain classes of ionic liquids (ILs). The present study was undertaken to analyze the thermodynamic driving forces of this process and to understand how the anions and cations comprising an IL interact with the different moieties of glucose residues to cause dissolution. All-atom molecular dynamics (MD) simulations were performed at two extreme states of cellulose dissolution: a crystalline microfibril and a dissociated state in which all the glucan chains of the microfibril are fully separated from each other by at least four solvation shells. MD simulations of the two states were carried out in water and in the IL 1-butyl-3-methylimidazolium chloride (BmimCl) to provide a comprehensive analysis of solvent effects on cellulose dissolution. The results reveal two important molecular aspects of the mechanism of cellulose dissolution. The first is that the perturbation of solvent structures by the dissolved glucan chains can be a crucial factor in determining solubility, particularly for the insolubility of cellulose in water at 300 K. Second, both the Cl(-) and the Bmim(+) ions of BmimCl interact with the moieties of glucan residues that form intersheet contacts, the most robust component of the interaction network of crystalline cellulose. Cl(-) anions can form hydrogen bonds (HBs) with the hydroxyl groups of glucan chains from either the equatorial or the axial directions. For Bmim(+) cations, the calculated density profiles reveal that the contacts with glucan chains along the axial directions are closer than those along the equatorial directions. On the basis of the results of atomistic MD simulations, we propose that interacting with glucan chains along axial directions and disrupting the intersheet contacts of cellulose is an important ability of cellulose pretreatment solvents.


Asunto(s)
Celulosa/química , Imidazoles/química , Agua/química , Líquidos Iónicos/química , Simulación de Dinámica Molecular , Solubilidad , Solventes/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA