Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Orthop Surg ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107882

RESUMEN

OBJECTIVE: Posterior condylar offset (PCO) and anterior condylar offset (ACO) exert an influence on the sagittal alignment in total knee arthroplasty (TKA). However, there is no common consensus that the variation range of posterior condylar offset (PCO) is associated with patient-reported outcome measures (PROMs) and the optimum variation range of PCO. This study aims to investigate the correlation between PCO and the PROMs of primary TKA for osteoarthritis (OA) and find out the optimal variation range of the PCO. METHODS: In this study, we performed a radiographic analysis of 106 patients (112 knees) with primary TKA. Patients were divided into two cohorts (A and B) according to the Western Ontario and McMaster Universities Osteoarthritis index (WOMAC). Correlations between the sagittal parameter and WOMAC were investigated using univariate and multivariate analysis. The receiver operating characteristic (ROC) curve was used to establish the cut-off value for the optimal variation range. We then further investigated how different variation range affects the WOMAC subscale score and forgotten-joint-score-12 (FJS-12). RESULTS: Univariate analysis revealed a correlation between the variation range of PCO (p < 0.01), ACO (p < 0.01) and PROMs. Multivariate analysis showed that only PCO was associated with PROMs. In the ROC graph, the cut-off value of the variation range of PCO is 2.85 mm (AUC = 0.66, Youden index = 0.26). The WOMAC functional ability score of the group outside the PCO variation range of 2.85 mm significantly increased compared to the group within the range. CONCLUSION: In this study, PCO variation was significantly associated with clinical outcomes in TKA and the optimal PCO variation range was within 2.85 mm. Maintaining the PCO variation within 2.85 mm could enhance functional recovery and patient satisfaction.

2.
Water Res ; 265: 122277, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39167974

RESUMEN

Perfluorinated alkylated substances (PFAS), as a category of persistent organic pollutants, have garnered extensive concern due to their resilience against environmental degradation. Herein, we developed an amine-functionalized sphalerite (ZnS) with adjustable surface amine functional groups and Zn defects (ZnS-X%[N]) by in situ coprecipitation and simple hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB). This material demonstrated efficient PFAS adsorption and subsequent photo-induced degradation under UV irradiation. The characterization results by TEM, BET, FTIR, XPS and EPR revealed that CTAB primarily influences ZnS by modulating surface amine functionalities, zinc defect density, and enhancing its photoreductive capacity. Adsorption and kinetic degradation experiments further showed that a medium CTAB concentration in ZnS-40%[N] achieves highest PFAS adsorption capacity (Cmax: 0.201 mol kg-1), and the corresponding decomposition rate was the fastest (kde: 1.53; kdf: 1.19). This efficacy is attributed to the ZnS-40%[N]'s ideal adsorptive sites and surface shallow defects. Moreover, theoretical simulation also supports the above experimental inference. Overall, ZnS-X%[N] exhibits a synergistic effect on PFAS adsorption and degradation, showcasing its potential for environmental adaptability and practical application.

4.
Nat Commun ; 15(1): 6102, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030211

RESUMEN

Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.

6.
Exp Cell Res ; 439(2): 114111, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823471

RESUMEN

Skeletal muscle ischemia-reperfusion (IR) injury poses significant challenges due to its local and systemic complications. Traditional studies relying on two-dimensional (2D) cell culture or animal models often fall short of faithfully replicating the human in vivo environment, thereby impeding the translational process from animal research to clinical applications. Three-dimensional (3D) constructs, such as skeletal muscle spheroids with enhanced cell-cell interactions from human pluripotent stem cells (hPSCs) offer a promising alternative by partially mimicking human physiological cellular environment in vivo processes. This study aims to establish an innovative in vitro model, human skeletal muscle spheroids based on sphere differentiation from hPSCs, to investigate human skeletal muscle developmental processes and IR mechanisms within a controlled laboratory setting. By eticulously recapitulating embryonic myogenesis through paraxial mesodermal differentiation of neuro-mesodermal progenitors, we successfully established 3D skeletal muscle spheroids that mirror the dynamic colonization observed during human skeletal muscle development. Co-culturing human skeletal muscle spheroids with spinal cord spheroids facilitated the formation of neuromuscular junctions, providing functional relevance to skeletal muscle spheroids. Furthermore, through oxygen-glucose deprivation/re-oxygenation treatment, 3D skeletal muscle spheroids provide insights into the molecular events and pathogenesis of IR injury. The findings presented in this study significantly contribute to our understanding of skeletal muscle development and offer a robust platform for in vitro studies on skeletal muscle IR injury, holding potential applications in drug testing, therapeutic development, and personalized medicine within the realm of skeletal muscle-related pathologies.


Asunto(s)
Diferenciación Celular , Músculo Esquelético , Células Madre Pluripotentes , Daño por Reperfusión , Esferoides Celulares , Humanos , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Músculo Esquelético/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Esferoides Celulares/citología , Desarrollo de Músculos , Técnicas de Cocultivo/métodos , Células Cultivadas , Técnicas de Cultivo de Célula/métodos
7.
J Am Chem Soc ; 146(22): 15479-15487, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780095

RESUMEN

The development of efficient and low-cost catalysts is essential for photocatalysis; however, the intrinsically low photocatalytic efficiency as well as the difficulty in using and recycling photocatalysts in powder morphology greatly limit their practical performance. Herein, we describe quasi-homogeneous photocatalysis to overcome these two limitations by constructing ultrastiff, hierarchically porous, and photoactive aerogels of conjugated microporous polymers (CMPs). The CMP aerogels exhibit low density but high stiffness beyond 105 m2 s-2, outperforming most low-density materials. Extraordinary stiffness ensures their use as robust scaffolds for scaled photocatalysis and recycling without damage at the macroscopic level. A challenging but desirable reaction for direct deaminative borylation is demonstrated using CMP aerogel-based quasi-homogeneous photocatalysis with gram-scale productivity and record-high efficiency under ambient conditions. Combined terahertz and transient absorption spectroscopic studies unveil the generation of high-mobility free carriers and long-lived excitonic species in the CMP aerogels, underlying the observed superior catalytic performance.

8.
J Colloid Interface Sci ; 670: 323-336, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763028

RESUMEN

Selective removal of target organic pollutants in complex water quality of municipal sewage is extremely important for the deep treatment of water quality. Here, energetic MOF and Fe-MOF are doped in electrostatic spinning process to adjust the structure and composition of the catalysts, active oxygen species (ROSs), realizing the selective removal of organic pollutants. Non-azo and azo pollutants are selected as target pollutants. Catalysts PCFe-8 with Fe nanoclusters, EPCFe-8 with Fe-Nx, and EPC-8 without Fe doping are used to activate peroxymonosulfate (PMS) for degrading pollutants. The results show that the PCFe-8/PMS system can produce the most SO4- and exhibit superior removal of azo pollutants, whereas the degradation behavior of non-azo pollutants is more inclined to occur in the EPCFe-8/PMS system and the EPC-8/PMS system. This work provides a reference for elucidating the relationship between catalyst structure and components, types of ROSs, and selective degradation of pollutants.

9.
J Am Chem Soc ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728652

RESUMEN

Porous organic polymers (POPs) with inherent porosity, tunable pore environment, and semiconductive property are ideally suitable for application in various advanced semiconductor-related devices. However, owing to the lack of processability, POPs are usually prepared in powder forms, which limits their application in advanced devices. Herein, we demonstrate an example of information storage application of POPs with film form prepared by an electrochemical method. The growth process of the electropolymerized films in accordance with the Volmer-Weber model was proposed by observation of atomic force microscopy. Given the mechanism of the electron transfer system, we verified and mainly emphasized the importance of porosity and interfacial properties of porous polymer films for memristor. As expected, the as-fabricated memristors exhibit good performance on low turn-on voltage (0.65 ± 0.10 V), reliable data storage, and high on/off current ratio (104). This work offers inspiration for applying POPs in the form of electropolymerized films in various advanced semiconductor-related devices.

10.
Case Rep Infect Dis ; 2024: 7219952, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737750

RESUMEN

Over 200 different serogroups of Vibrio cholerae based on O-polysaccharide specificity have been described worldwide, including the two most important serogroups, O1 and O139. Non-O1/non-O139 V. cholerae serogroups generally do not produce the cholera-causing toxin but do sporadically cause gastroenteritis and extra-intestinal infections. Recently, however, bloodstream infections caused by non-O1/non-O139 V. cholerae are being increasingly reported, and these infections are associated with high mortality in immunocompromised hosts. We describe a case of non-O1/non-O139 V. cholerae bacteremia in a patient with autoimmune pancreatitis and stenosis of the intra- and extrahepatic bile ducts. The clinical manifestations of bacteremia were fever and mild digestive symptoms. The blood cultures showed V. cholerae, which was identified as a non-O1, non-O139 serogroup by slide agglutination tests and PCR. The bloodstream infection of the patient was likely caused by the consumption of contaminated seafood at a banquet. The patient recovered after the administration of a third-generation cephalosporin. Non-O1/non-O139 V. cholerae infection presents with or without gastrointestinal manifestations; close attention should be paid to the possibility of disseminated non-O1/non-O139 V. cholerae infection in high-risk patients.

11.
J Hazard Mater ; 470: 134213, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613958

RESUMEN

Manganese oxides (MnO2) are commonly prevalent in groundwater, sediment and soil. In this study, we found that oxalate (H2C2O4) dissolved MnO2, leading to the formation of Mn(II)/(III), CO2(aq) and reactive oxygen species (·CO2-/O2·-/H2O2/·OH). Notably, CO2(aq) played a crucial role in ·OH formation, contributing to the degradation of atrazine (ATZ). To elucidate underneath mechanisms, a series of reactions with different gas-liquid ratios (GLR) were conducted. At the GLR of 0.3, 3.76, and + ∞ 79.4 %, 5.32 %, and 5.28 % of ATZ were eliminated, in which the cumulative ·OH concentration was 39.6 µM, 8.11 µM, and 7.39 µM and the cumulative CO2(aq) concentration was 11.2 mM, 4.7 mM, and 2.8 mM, respectively. The proposed reaction pathway was that CO2(aq) participated in the formation of a ternary complex [C2O4-Mn(II)-HCO4·3 H2O]-, which converted to a transition state (TS) as [C2O4-Mn(II)-CO3-OH·3 H2O]-, then decomposed to a complex radical [C2O4-Mn(II)-CO3·3 H2O]·- and ·OH after electron transfer within TS. It was novel to discover the role of CO2(aq) for ·OH yielding during MnO2 dissolution by H2C2O4. This finding helps revealing the overlooked processes that CO2(aq) influenced the fate of ATZ or other organic compounds in environment and providing us ideas for new technique development in contaminant remediation. ENVIRONMENTAL IMPLICATION: Manganese oxides and oxalate are common in soil, sediment and water. Their interactions could induce the formation of Mn(II)/(III), CO2(aq) and ·CO2-/O2·-/H2O2. This study found that atrazine could be effectively removed due to ·OH radicals under condition of high CO2(aq) concentration. The concentrations of Mn (0.0002-8.34 mg·L-1) and CO2(aq) (15-40 mg·L-1) were high in groundwater, and the surface water or rainfall seeps into groundwater and bring organic acids, which might promote the ·OH formation. The results might explain the missing steps of herbicides transformation in these environments and be helpful in developing new techniques in remediation in future.

12.
Sci Total Environ ; 927: 172468, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615762

RESUMEN

Aqueous trivalent manganese [Mn(III)], an important reactive intermediate, is ubiquitous in natural surface water containing humic acid (HA). However, the effect of low-molecular-weight organic acids (LMWOAs) on the formation, stability and reactivity of Mn(III) intermediate is still unknown. In this study, six LMWOAs, including oxalic acid (Oxa), salicylic acid (Sal), catechol (Cat), caffeic acid (Caf), gallic acid (Gal) and ethylene diamine tetraacetic acid (EDTA), were selected to investigate the effects of LMWOAs on the degradation of BPA induced by in situ formed Mn(III)-L in the HA/Mn(II) system under light irradiation. The chromophoric constituents of HA could absorb light radiation and generate superoxide radical to promote the oxidation of Mn(II) to form Mn(III), which was further involved in transformation of BPA. Our results implied that different LMWOAs did significantly impact on Mn(III) production and its degradation of BPA due to their different functional group. EDTA, Oxa and Sal extensively increased the Mn(III) concentration from 50 to 100 µM compared to the system without LMWOAs, following the order of EDTA > Oxa > Sal, and also enhanced the degradation of BPA with the similar patterns. In contrast, Cat, Caf and Gal had an inhibitory effect on the formation of Mn(III), which is likely because they consumed the superoxide radicals generated from irradiated HA, resulting in the inhibition of Mn(II) oxidation and further BPA removal. The product identification and theoretical calculation indicated that a single electron transfer process occurred between Mn(III)-L and BPA, forming BPA radicals and subsequent self-coupling products. Our results demonstrated that the LMWOAs with different structures could alter the cycling process of Mn via complexation and redox reactions, which would provide new implications for the removal of organic pollutants in surface water.

13.
Nat Commun ; 15(1): 2898, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575596

RESUMEN

Selective molecular recognition is an important alternative to the energy-intensive industrial separation process. Porous coordination polymers (PCPs) offer designing platforms for gas separation because they possess precise controllability over structures at the molecular level. However, PCPs-based gas separations are dominantly achieved using strong adsorptive sites for thermodynamic recognition or pore-aperture control for size sieving, which suffer from insufficient selectivity or sluggish kinetics. Developing PCPs that work at high temperatures and feature both high uptake capacity and selectivity is urgently required but remains challenging. Herein, we report diffusion-rate sieving of propylene/propane (C3H6/C3H8) at 300 K by constructing a PCP material whose global and local dynamics cooperatively govern the adsorption process via the mechanisms of the gate opening for C3H6 and the diffusion regulation for C3H8, respectively, yielding substantial differences in both uptake capacity and adsorption kinetics. Dynamic separation of an equimolar C3H6/C3H8 mixture reveals outstanding sieving performance with a C3H6 purity of 99.7% and a separation factor of 318.

14.
Plant Physiol ; 195(3): 2309-2322, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38466216

RESUMEN

Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Abscísico/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Transducción de Señal , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Reproducción , Mutación/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Proteínas de Homeodominio
15.
Angew Chem Int Ed Engl ; 63(19): e202402440, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38426574

RESUMEN

Perfluoroalkyl substances (PFASs) are persistent and toxic to human health. It is demanding for high-efficient and green technologies to remove PFASs from water. In this study, a novel PFAS treatment technology was developed, utilizing polytetrafluoroethylene (PTFE) particles (1-5 µm) as the catalyst and a low frequency ultrasound (US, 40 kHz, 0.3 W/cm2) for activation. Remarkably, this system can induce near-complete defluorination for different structured PFASs. The underlying mechanism relies on contact electrification between PTFE and water, which induces cumulative electrons on PTFE surface, and creates a high surface voltage (tens of volts). Such high surface voltage can generate abundant reactive oxygen species (ROS, i.e., O2⋅-, HO⋅, etc.) and a strong interfacial electrostatic field (IEF of 109~1010 V/m). Consequently, the strong IEF significantly activates PFAS molecules and reduces the energy barrier of O2⋅- nucleophilic reaction. Simultaneously, the co-existence of surface electrons (PTFE*(e-)) and HO⋅ enables synergetic reduction and oxidation of PFAS and its intermediates, leading to enhanced and thorough defluorination. The US/PTFE method shows compelling advantages of low energy consumption, zero chemical input, and few harmful intermediates. It offers a new and promising solution for effectively treating the PFAS-contaminated drinking water.

16.
Phytomedicine ; 125: 155290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308918

RESUMEN

BACKGROUND: In our previous study, we provided evidence that Astragalus mongholicus Bunge(AM) and its extracts possess a protective capability against radiation-induced damage, potentially mediated through the reduction of reactive oxygen species (ROS) and nitric oxide (NO). However, we were pleasantly surprised to discover during our experimentation that AM not only offers protection against radiation damage but also exhibits a radiation sensitization effect. This effect may be attributed to a specific small molecule present in AM known as ononin. Currently, radiation sensitizers are predominantly found in nitrazole drugs and nanomaterials, with no existing reports on the radiation sensitization properties of ononin, nor its underlying mechanism. PURPOSE: This study aims to investigate the sensitization effect of the small molecule ononin derived from AM on lung cancer radiotherapy, elucidating its specific molecular mechanism of action. Additionally, the safety profile of combining astragalus small molecule ononin with radiation therapy will be evaluated. METHODS: The effective concentration of ononin was determined through cell survival experiments, and the impact of ononin combined with varying doses of radiation on lung cancer cells was observed using CCK-8 and cell cloning experiments. The apoptotic effect of ononin combined with radiation on lung cancer cells was assessed using Hochester staining, flow cytometry, and WB assay. Additionally, WB and immunofluorescence analysis were conducted to investigate the influence of ononin on HIF-1α/VEGF pathway. Furthermore, Molecular Dynamics Simulation was employed to validate the targeted binding ability of ononin and HIF-1α. A lung cancer cell line was established to investigate the effects of knockdown and overexpression of HIF-1α. Subsequently, the experiment was repeated using tumor bearing nude mice and C57BL/6 mouse models in an in vivo study. Tumor volume was measured using a vernier caliper, while HE, immunohistochemistry, and immunofluorescence techniques were employed to observe the effects of ononin combined with radiation on tumor morphology, proliferation, and apoptosis. Additionally, Immunofluorescence was employed to examine the impact of ononin on HIF-1α/VEGF pathway in vivo, and its effect on liver function in mice was assessed through biochemistry analysis. RESULTS: At a concentration of 25 µM, ononin did not affect the proliferation of lung epithelial cells but inhibited the survival of lung cancer cells. In vitro experiments demonstrated that the combination of ononin and radiation could effectively inhibit the growth of lung cancer cells, induce apoptosis, and suppress the excessive activation of the Hypoxia inducible factor 1 alpha/Vascular endothelial growth factor pathway. In vivo experiments showed that the combination of ononin and radiation reduced the size and proliferation of lung cancer tumors, promoted cancer cell apoptosis, mitigated abnormal activation of the Hypoxia inducible factor 1 alpha pathway, and protected against liver function damage. CONCLUSION: This study provides evidence that the combination of AM and its small molecule ononin can enhance the sensitivity of lung cancer to radiation. Additionally, it has been observed that this combination can specifically target HIF-1α and exert its effects. Notably, ononin exhibits the unique ability to protect liver function from damage while simultaneously enhancing the tumor-killing effects of radiation, thereby demonstrating a synergistic and detoxifying role in tumor radiotherapy. These findings contribute to the establishment of a solid basis for the development of novel radiation sensitizers derived from traditional Chinese medicine.


Asunto(s)
Glucósidos , Isoflavonas , Neoplasias Pulmonares , Fármacos Sensibilizantes a Radiaciones , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos C57BL , Factores de Crecimiento Endotelial Vascular/metabolismo , Tolerancia a Radiación , Fármacos Sensibilizantes a Radiaciones/farmacología , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia
17.
Heliyon ; 10(4): e26035, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38370181

RESUMEN

Lead-based reactor is a new type of reactor using liquid lead or lead-bismuth alloy as a coolant. As the core working element of the main pump, the impeller is subjected to a huge load when conveying heavy metal liquids and is highly susceptible to damage. In this study, we used ANSYS and FLUENT software to investigate the stress, deformation, and creep deformation of the nuclear main pump impeller under a liquid lead-bismuth environment by the fluid-solid coupling method. The maximum equivalent force of the impeller was located at the junction of the blade and hub, which was prone to fatigue damage under the action of alternating load. The stress, deformation, and creep characteristics of the impeller blade were observed to generally increase with rotational speed. Particularly, the junction of the blade root and hub exhibited high susceptibility to stress concentration and fatigue damage. At a flow rate of 0.64 m/s and a speed of 690 r/min, the maximum equivalent force was 16.7 MPa, which was lower than the yield strength of 316L stainless steel. Additionally, the maximum deformation was less than 0.63 mm. Over a five-year period, the creep of the impeller ranged from a minimum of 0.228% to a maximum of 0.447%, indicating that the impeller can reliably operate in a liquid lead-bismuth environment for at least five years.

18.
World J Gastroenterol ; 30(4): 367-380, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38313237

RESUMEN

BACKGROUND: L-type calcium channels are the only protein channels sensitive to calcium channel blockers, and are expressed in various cancer types. The Cancer Genome Atlas database shows that the mRNA levels of multiple L-type calcium channel subunits in esophageal squamous cell carcinoma tumor tissue are significantly higher than those in normal esophageal epithelial tissue. Therefore, we hypothesized that amlodipine, a long-acting dihydropyridine L-type calcium channel blocker, may inhibit the occurrence and development of esophageal cancer (EC). AIM: To investigate the inhibitory effects of amlodipine on EC through endoplasmic reticulum (ER) stress. METHODS: Cav1.3 protein expression levels in 50 pairs of EC tissues and corresponding paracancerous tissues were examined. Subsequently, the inhibitory effects of amlodipine on proliferation and migration of EC cells in vitro were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and Transwell assays. In vivo experiments were performed using murine xenograft model. To elucidate the underlying mechanisms, in vitro cell studies were performed to confirm that ER stress plays a role in inhibition proliferation and migration of EC cells treated with amlodipine. RESULTS: The expression level of Cav1.3 in esophageal carcinoma was 1.6 times higher than that in paracancerous tissues. Amlodipine treatment decreased the viability of esophageal carcinoma cells in a dose- and time-dependent manner. In vivo animal experiments also clearly indicated that amlodipine inhibited the growth of EC tumors in mice. Additionally, amlodipine reduces the migration of tumor cells by inhibiting epithelial-mesenchymal transition (EMT). Mechanistic studies have demonstrated that amlodipine induces ER stress-mediated apoptosis and suppresses EMT. Moreover, amlodipine-induced autophagy was characterized by an increase in autophagy lysosomes and the accumulation of light chain 3B protein. The combination of amlodipine with the ER stress inhibitor 4-phenylbutyric acid further confirmed the role of the ER stress response in amlodipine-induced apoptosis, EMT, and autophagy. Furthermore, blocking autophagy increases the ratio of apoptosis and migration. CONCLUSION: Collectively, we demonstrate for the first time that amlodipine promotes apoptosis, induces autophagy, and inhibits migration through ER stress, thereby exerting anti-tumor effects in EC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Ratones , Animales , Amlodipino/farmacología , Amlodipino/uso terapéutico , Neoplasias Esofágicas/patología , Apoptosis , Proliferación Celular , Estrés del Retículo Endoplásmico , Línea Celular Tumoral
19.
Environ Sci Technol ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329941

RESUMEN

Perfluoroalkyl substances (PFAS) are a class of persistent organic pollutants known as "forever chemicals". Currently, the hydrated electron-based advanced reduction process (ARP) holds promise for the elimination of PFAS. However, the efficiency of ARP is often challenged by an oxygen-rich environment, resulting in the consumption of hydrated electron source materials in exchange for the high PFAS decomposition efficiency. Herein, we developed a ternary system constructed by indole and isopropyl alcohol (IPA), and the addition of IPA significantly enhanced the PFOA degradation and defluorination efficiency in the presence of low-concentration indole (<0.4 mM). Meanwhile, opposite results were obtained with a higher amount of indole (>0.4 mM). Further exploring the molecular mechanism of the reaction system, the addition of IPA played two roles. On one hand, IPA built an anaerobic reaction atmosphere and improved the yield and utilization efficiency of hydrated electrons with a low concentration of indole. On the other hand, IPA suppressed the attraction between indole and PFOA, thus reducing the hydrated electron transfer efficiency, especially with more indole. In general, the indole/PFAS/IPA system significantly improved the PFAS destruction efficiency with a small amount of hydrated electron donors, which provided new insights for development of simple and efficient techniques for the treatment of PFAS-contaminated wastewater.

20.
Huan Jing Ke Xue ; 45(1): 594-605, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216508

RESUMEN

The pollution control of tetracycline antibiotics in the environment has become a hot topic, and biochar adsorption has become an important technology to remove organic pollutants. Pyrolytic biochars (BC400, BC500, and BC600) were prepared from corn straw and then were modified by KOH to obtain KBC400, KBC500, and KBC600. Among them, KBC400 was selected for secondary pyrolysis activation at 400-600℃ to obtain AKBC400, AKBC500, and AKBC600. The structure characteristics and surface properties of AKBC were also characterized. The adsorption kinetics and thermodynamic characteristics of oxytetracycline hydrochloride (OTC) in the solution by AKBC were investigated using batch experiments. Compared to that of BC400, the specific surface area and pore structure of AKBC were significantly improved, and the aromaticity was also enhanced, resulting in the notable enhancement of the adsorption capacities for OTC. The pseudo-second-order kinetics model could better fit the adsorption process, and AKBC500 had the largest adsorption rate constant and capacity. Both the intraparticle diffusion and film diffusion were the rate-limiting steps. The Langmuir, Freundlich, and Temkin models could fit the adsorption isotherms perfectly. The adsorption of OTC on AKBC was a spontaneous, endothermic, and entropy-increasing process by both physisorption and chemisorption. The pH values in the range of 3.0-7.0 were favorable for the adsorption of OTC by AKBC. The adsorption capacity decreased with the humic acid concentration over 10 mg·L-1. The adsorption mechanism of OTC by AKBC involved pore filling, hydrogen bonding, π-π conjugation, cation-π bond, and strong electrostatic effect. AKBC still had good reusability for OTC removal after five times of regeneration. The obtained AKBC is a potential adsorbent for OTC removal from water due to the good pore structure, high adsorption capacity, and stable adsorption effect.


Asunto(s)
Oxitetraciclina , Contaminantes Químicos del Agua , Zea mays , Agua , Adsorción , Antibacterianos , Carbón Orgánico/química , Cinética , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA