Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Dairy Sci ; 107(1): 573-592, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37690725

RESUMEN

The transition period in dairy cows is a critical stage and peripartum oxidative status, negative energy balance (NEB), and inflammation are highly prevalent. Fecal microbial metabolism is closely associated with blood oxidative status and nonesterified fatty acids (NEFA) levels. Here, we investigated dynamic changes in total oxidative status markers and NEFA in blood, fecal microbiome, and metabolome of 30 dairy cows during transition (-21, -7, +7, +21 d relative to calving). Then the Bayesian network and 9 machine-learning algorithms were applied to dismantle their relationship. Our results show that the oxidative status indicator (OSI) of -21, -7, +7 d was higher than +21 d. The plasma concentration of NEFA peaked on +7 d. For fecal microenvironment, a decline in bacterial α diversity was observed at postpartum and in bacterial interactions at +7 d. Conversely, microbial metabolites involved in carbohydrate, lipid, and energy metabolism increased on +7 d. A correlation analysis revealed that 11 and 10 microbial metabolites contributed to OSI and NEFA variations, respectively (arc strength >0.5). The support vector machine (SVM) radial model showed the highest average predictive accuracy (100% and 88.9% in the test and external data sets) for OSI using 1 metabolite and 3 microbiota. The SVM radial model also showed the highest average diagnostic accuracy (100% and 91% in the test and external data sets) for NEFA with 2 metabolites and 3 microbiota. Our results reveal a relationship between variation in the fecal microenvironment and indicators of oxidative status, NEB, and inflammation, which provide a theoretical basis for the prevention and precise regulation of peripartum oxidative status and NEB.


Asunto(s)
Ácidos Grasos no Esterificados , Periodo Periparto , Femenino , Bovinos , Animales , Teorema de Bayes , Periodo Posparto , Inflamación/veterinaria , Estrés Oxidativo , Lactancia/fisiología , Ácido 3-Hidroxibutírico
2.
Research (Wash D C) ; 6: 0025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040481

RESUMEN

Newborn ruminants are considered functionally monogastric animals. The poor understanding of cellular differences between newborn and mature ruminants prevents the improvement of health and performance of domestic ruminants. Here, we performed the single-cell RNA sequencing on the rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon, rectum, liver, salivary gland, and mammary gland from newborn and adult cattle. A comprehensive single-cell transcriptomic atlas covering 235,941 high-quality single cells and 78 cell types was deciphered. A Cattle Cell Landscape database (http://cattlecelllandscape.zju.edu.cn) was established to elaborately display the data and facilitate effective annotation of cattle cell types and subtypes for the broad research community. By measuring stemness states of epithelial cells in each tissue type, we revealed that the epithelial cells from newborn forestomach (rumen, reticulum, and omasum) were more transcriptionally indistinct and stochastic compared with the adult stage, which was in contrast to those of abomasum and intestinal tissues. The rapid forestomach development during the early life of calves was driven by epithelial progenitor-like cells with high DNA repair activities and methylation. Moreover, in the forestomach tissues of newborn calves, the Megasphaera genus was involved in regulating the transcriptional plasticity of the epithelial progenitor-like cells by DNA methylation regulation. A novel cell type, the STOML3+ cell, was found to be newborn-specific. It apparently plays a crucial role in stemness maintenance of its own and cholangiocytes in the hepatic microenvironment. Our results reveal that the age- and microbiota-dependent cell stemness plasticity drives the postnatal functional maturity of ruminants.

3.
Microbiome ; 11(1): 87, 2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087457

RESUMEN

BACKGROUND: Dairy cows are susceptible to postpartum systemic oxidative stress (OS), which leads to significant production loss and metabolic disorders. The gut microbiota has been linked to host health and stress levels. However, to what extent the gut microbiota is associated with postpartum OS remains unknown. In this study, the contribution of the fecal microbiota to postpartum systemic OS and its underlying mechanisms were investigated by integrating 16S rRNA gene sequencing, metagenomics, and metabolomics in postpartum dairy cattle and by transplanting fecal microbiota from cattle to mice. RESULTS: A strong link was found between fecal microbial composition and postpartum OS, with an explainability of 43.1%. A total of 17 significantly differential bacterial genera and 19 species were identified between cows with high (HOS) and low OS (LOS). Among them, 9 genera and 16 species showed significant negative correlations with OS, and Marasmitruncus and Ruminococcus_sp._CAG:724 had the strongest correlations. The microbial functional analysis showed that the fecal microbial metabolism of glutamine, glutamate, glycine, and cysteine involved in glutathione synthesis was lower in HOS cows. Moreover, 58 significantly different metabolites were identified between HOS and LOS cows, and of these metabolites, 19 were produced from microbiota or cometabolism of microbiota and host. Furthermore, these microbial metabolites were enriched in the metabolism of glutamine, glutamate, glycine, and cysteine. The mice gavaged with HOS fecal microbiota had significantly higher OS and lower plasma glutathione peroxidase and glutathione content than those orally administered saline or LOS fecal microbiota. CONCLUSIONS: Integrated results suggest that the fecal microbiota is responsible for OS and that lower glutathione production plays a causative role in HOS. These findings provide novel insights into the mechanisms of postpartum OS and potential regulatory strategies to alleviate OS in dairy cows. Video Abstract.


Asunto(s)
Glutamina , Microbiota , Animales , Bovinos , Femenino , Ratones , Cisteína , Glutamatos , Glutatión , Estrés Oxidativo , Periodo Posparto , ARN Ribosómico 16S/genética
4.
Microbiome ; 11(1): 40, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869370

RESUMEN

BACKGROUND: Postpartum dairy cows experiencing excessive lipolysis are prone to severe immunosuppression. Despite the extensive understanding of the gut microbial regulation of host immunity and metabolism, its role during excessive lipolysis in cows is largely unknown. Herein, we investigated the potential links between the gut microbiome and postpartum immunosuppression in periparturient dairy cows with excessive lipolysis using single immune cell transcriptome, 16S amplicon sequencing, metagenomics, and targeted metabolomics. RESULTS: The use of single-cell RNA sequencing identified 26 clusters that were annotated to 10 different immune cell types. Enrichment of functions of these clusters revealed a downregulation of functions in immune cells isolated from a cow with excessive lipolysis compared to a cow with low/normal lipolysis. The results of metagenomic sequencing and targeted metabolome analysis together revealed that secondary bile acid (SBA) biosynthesis was significantly activated in the cows with excessive lipolysis. Moreover, the relative abundance of gut Bacteroides sp. OF04 - 15BH, Paraprevotella clara, Paraprevotella xylaniphila, and Treponema sp. JC4 was mainly associated with SBA synthesis. The use of an integrated analysis showed that the reduction of plasma glycolithocholic acid and taurolithocholic acid could contribute to the immunosuppression of monocytes (CD14+MON) during excessive lipolysis by decreasing the expression of GPBAR1. CONCLUSIONS: Our results suggest that alterations in the gut microbiota and their functions related to SBA synthesis suppressed the functions of monocytes during excessive lipolysis in transition dairy cows. Therefore, we concluded that altered microbial SBA synthesis during excessive lipolysis could lead to postpartum immunosuppression in transition cows. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Femenino , Animales , Bovinos , Lipólisis , Bacteroides , Regulación hacia Abajo , Metaboloma
5.
BMC Biol ; 20(1): 280, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36514051

RESUMEN

BACKGROUND: The rumen is the hallmark organ of ruminants, playing a vital role in their nutrition and providing products for humans. In newborn suckling ruminants milk bypasses the rumen, while in adults this first chamber of the forestomach has developed to become the principal site of microbial fermentation of plant fibers. With the advent of single-cell transcriptomics, it is now possible to study the underlying cell composition of rumen tissues and investigate how this relates the development of mutualistic symbiosis between the rumen and its epithelium-attached microbes. RESULTS: We constructed a comprehensive cell landscape of the rumen epithelium, based on single-cell RNA sequencing of 49,689 high-quality single cells from newborn and adult rumen tissues. Our single-cell analysis identified six immune cell subtypes and seventeen non-immune cell subtypes of the rumen. On performing cross-species analysis of orthologous genes expressed in epithelial cells of cattle rumen and the human stomach and skin, we observed that the species difference overrides any cross-species cell-type similarity. Comparing adult with newborn cattle samples, we found fewer epithelial cell subtypes and more abundant immune cells, dominated by T helper type 17 cells in the rumen tissue of adult cattle. In newborns, there were more fibroblasts and myofibroblasts, an IGFBP3+ epithelial cell subtype not seen in adults, while dendritic cells were the most prevalent immune cell subtype. Metabolism-related functions and the oxidation-reduction process were significantly upregulated in adult rumen epithelial cells. Using 16S rDNA sequencing, fluorescence in situ hybridization, and absolute quantitative real-time PCR, we found that epithelial Desulfovibrio was significantly enriched in the adult cattle. Integrating the microbiome and metabolome analysis of rumen tissues revealed a high co-occurrence probability of Desulfovibrio with pyridoxal in the adult cattle compared with newborn ones while the scRNA-seq data indicated a stronger ability of pyroxidal binding in the adult rumen epithelial cell subtypes. These findings indicate that Desulfovibrio and pyridoxal likely play important roles in maintaining redox balance in the adult rumen. CONCLUSIONS: Our integrated multi-omics analysis provides novel insights into rumen development and function and may facilitate the future precision improvement of rumen function and milk/meat production in cattle.


Asunto(s)
Microbiota , Rumen , Recién Nacido , Humanos , Bovinos , Animales , Rumen/metabolismo , Hibridación Fluorescente in Situ , Microbiota/genética , Rumiantes/genética , Piridoxal/metabolismo , Alimentación Animal/análisis
6.
J Anim Sci Biotechnol ; 13(1): 131, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36380371

RESUMEN

BACKGROUND: Mammary health is important for transition dairy cows and has been well recognized to exert decisive effects on animal welfare. However, the factors influencing mammary health are still unclear. Differential somatic cell count (DSCC) could reflect the mastitis risk since it is the percentage of neutrophils plus lymphocytes in total somatic cells and could be reflective of mammary health of dairy cows. This work aimed to investigate the assessment and prognosis of the health of transition cows based on blood neutrophil extracellular traps (NETs). RESULTS: Eighty-four transition Holstein dairy cows were selected. The serum was sampled in all the animals at week 1 pre- and postpartum, and milk was sampled at week 1 postpartum. Based on the DSCC in milk at week 1, cows with lower (7.4% ± 4.07%, n = 15) and higher (83.3% ± 1.21%, n = 15) DSCCs were selected. High DSCC cows had higher levels of red blood cell counts (P < 0.05), hemoglobin (P = 0.07), and hematocrit (P = 0.05), higher concentrations of serum oxidative variables [(reactive oxygen species (P < 0.05), malondialdehyde (P < 0.05), protein carbonyl (P < 0.05), and 8-hydroxy-2-deoxyguanosine (P = 0.07)], higher levels of serum and milk NETs (P < 0.05) and blood-milk barrier indicators, including serum ß-casein (P = 0.05) and milk immunoglobulin G2 (P = 0.09), than those of low DSCC cows. In addition, lower concentrations of serum nutrient metabolites (cholesterol and albumin) (P < 0.05) and a lower level of serum deoxyribonuclease I (P = 0.09) were observed in high DSCC cows than in low DSCC cows. Among the assessments performed using levels of the three prepartum serum parameters (NETs, deoxyribonuclease I and ß-casein), the area under the curve (0.973) of NETs was the highest. In addition, the sensitivity (1.00) and specificity (0.93) were observed for the discrimination of these cows using NETs levels with a critical value of 32.2 ng/mL (P < 0.05). CONCLUSIONS: The formation of NETs in blood in transition dairy cows may damage the integrity of the blood-milk barrier and thereby increase the risk for mastitis in postpartum cows.

7.
J Adv Res ; 37: 1-18, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35499046

RESUMEN

Introduction: Dairy cattle are a vitally important ruminant in meeting the demands for high-quality animal protein production worldwide. The complicated biological process of converting human indigestible biomass into highly digestible and nutritious milk is orchestrated by various tissues. However, poorly understanding of the cellular composition and function of the key metabolic tissues hinders the improvement of health and performance of domestic ruminants. Objectives: The cellular heterogeneity, metabolic features, interactions across ten tissue types of lactating dairy cattle were studied at single-cell resolution in the current study. Methods: Unbiased single-cell RNA-sequencing and analysis were performed on the rumen, reticulum, omasum, abomasum, ileum, rectum, liver, salivary gland, mammary gland, and peripheral blood of lactating dairy cattle. Immunofluorescences and fluorescence in situ hybridization were performed to verify cell identity. Results: In this study, we constructed a single-cell landscape covering 88,013 high-quality (500 < genes < 4,000, UMI < 50, 000, and mitochondrial gene ratio < 40% or 15%) single cells and identified 55 major cell types in lactating dairy cattle. Our systematic survey of the gene expression profiles and metabolic features of epithelial cells related to nutrient transport revealed cell subtypes that have preferential absorption of different nutrients. Importantly, we found that T helper type 17 (Th17) cells (highly expressing CD4 and IL17A) were specifically enriched in the forestomach tissues and predominantly interacted with the epithelial cell subtypes with high potential uptake capacities of short-chain fatty acids through IL-17 signaling. Furthermore, the comparison between IL17RAhighIL17RChigh cells (epithelial cells with IL17RA and IL17RC expression levels both greater than 0.25) and other cells explained the importance of Th17 cells in regulating the epithelial cellular transcriptional response to nutrient transport in the forestomach. Conclusion: The findings enhance our understanding of the cellular biology of ruminants and open new avenues for improved animal production of dairy cattle.


Asunto(s)
Lactancia , Transcriptoma , Animales , Bovinos , Femenino , Hibridación Fluorescente in Situ , Lactancia/fisiología , Nutrientes , Rumen
8.
Anim Nutr ; 7(4): 981-988, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34738028

RESUMEN

The objective of this study was to investigate whether supplementation with N-carbamoylglutamate (NCG) to cows during late gestation alters uteroplacental tissue nutrient transporters, calf metabolism and newborn weight. Thirty multiparous Chinese Holstein cows were used in a randomized complete block design experiment. During the last 28 d of pregnancy, cows were fed a diet without (CON) or with NCG (20 g/d per cow). The body weight of calves was weighed immediately after birth. Placentome samples were collected at parturition and used to assess mRNA expression of genes involved in transport of arginine, glucose, fatty acid and angiogenesis factors, as well as the mammalian target of rapamycin (mTOR) pathway. Blood samples of calves before colostrum consumption were also collected for the detection of plasma parameters, amino acids (AA) and metabolomics analysis. The newborn weight (P = 0.02) and plasma Arg concentration of NCG-calves was significantly higher (P = 0.05) than that of CON-calves, and the plasma concentrations of urea nitrogen tended to be lower (P = 0.10) in the NCG group. The mRNA abundance of genes involved in glucose transport (solute carrier family 2 member 3 [SLC2A3], P < 0.01), angiogenesis (nitric oxide synthase 3 [NOS3], P = 0.02), and mTOR pathway (serine/threonine-protein kinase 1 [AKT1], P = 0.10; eukaryotic translation initiation factor 4B pseudogene 1 [EIF4BP1], P = 0.08; EIF4EBP2, P = 0.04; and E74-like factor 2 [ELF2], P = 0.03) was upregulated in the placentome of NCG-supplemented cows. In addition, 17 metabolites were significantly different in the placentome of NCG-supplemented cows compared to non-supplemented cows, and these metabolites are mainly involved in arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and citrate cycle. In summary, the increased body weight of newborn calves from the NCG supplemented dairy cows may be attributed to the increased angiogenesis and uteroplacental nutrient transport and to the activated mTOR signal pathway, which may result in the increased nutrient supply to the fetus, and improved AA metabolism and urea cycle of the fetus.

9.
Food Res Int ; 149: 110682, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600684

RESUMEN

Cow's milk is a highly-nutritious dairy product part of human diet worldwide. Rumen-protected methionine (RPM) is widely used to improve lactation performance of dairy cows, but understanding of the effects of RPM on milk nutrients composition are still limited. In this study, twenty mid-lactating dairy cows were supplemented with 20 gm/day RPM for 8 weeks to investigate the responses of milk nutritional composition to RPM. Metabolomics was applied for analyzing milk metabolites and 16S rRNA gene sequencing was used for analysis of rumen microbial composition. Milk fat content and yield were significantly increased after RPM supplementation. Totally 443 compounds belonging to 15 classes were identified, among which 15 metabolites were significantly changed. The functional nutrient α-ketoglutaric acid were significantly increased in the milk after RPM supplementation. We found 48 significantly differing bacterial genera in the rumen after supplementing RPM. Multi-omics integrated analysis revealed the higher abundance of Acetobacter, unclassified_f_Lachnospiraceae and Saccharofermentan contributed to the improved milk fat. In addition, the enriched abundance of Thermoactinomyces, Asteroleplasma, and Saccharofermentan showed positive correlations with higher α-ketoglutaric acid of milk. Our results uncover the metabolomic fingerprint and the key functional metabolites in the milk after supplementing RPM in dairy cows, as well as the key rumen bacteria associated with them. These findings provide novel insights into the development of functional dairy products that enriched the functional nutrient α-ketoglutaric acid or high milk fat.


Asunto(s)
Leche , Rumen , Alimentación Animal/análisis , Animales , Bovinos , Femenino , Humanos , Lactancia , Metionina , Nutrientes , ARN Ribosómico 16S
10.
Anim Nutr ; 7(1): 232-238, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33997352

RESUMEN

The objective of this study was to investigate the effects of supplementing N-carbamoylglutamate (NCG), an Arg enhancer, on amino acid (AA) supply and utilization and productive performance of early-lactating dairy cows. Thirty multiparous Chinese Holstein dairy cows were randomly divided into control (CON, n = 15) and NCG (CON diet supplemented with NCG at 20 g/d per cow, n = 15) groups at 4 wk before calving. Diets were offered individually in tie-stalls, and NCG was supplemented by top-dress feeding onto total mixed ration for the NCG group. The experiment lasted until wk 10 after calving. Dry matter intake tended to be higher (P = 0.06), and yields of milk (P < 0.01), milk protein (P < 0.01), and milk fat (P < 0.01) were higher in the NCG-cows than in the CON-cows. Plasma activities of aspartate aminotransferase (P < 0.01), alanine aminotransferase (P = 0.03), and plasma level of ß-hydroxybutyrate (P = 0.04) were lower in the NCG-cows than in the CON-cows, whereas plasma glucose (P = 0.05) and nitric oxide (NO, P < 0.01) concentrations were higher. Coccygeal vein concentrations of Cys (P < 0.01), Pro (P < 0.01), Tyr (P = 0.05), most essential AA except Thr and His (P < 0.01), total essential AA (P < 0.01), and total AA (P < 0.01) were higher in the NCG-cows than in the CON-cows. The arterial supply of all AA was greater in the NCG-cows than in the CON-cows. The NCG-cows had higher mammary plasma flow of AA (P = 0.04) and clearance rate of Cys (P < 0.01), Pro (P < 0.01) and Asp (P < 0.01), and higher ratios of uptake to output of Met (P = 0.05), Lys (P < 0.01), Cys (P = 0.01), Pro (P = 0.03), and Asp (P = 0.01). In summary, addition of NCG initiated from the prepartum period improved the lactation performance of postpartum dairy cows, which might attribute to greater Arg and NO concentrations, as well as improved AA supply and utilization, liver function, and feed intake in these cows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA