RESUMEN
Aim: Bibliometric and data visualization methods were used to identify the current status, key areas, and emerging frontiers in ropivacaine research. Methods: We conducted a comprehensive search of the Web of Science database for publications related to ropivacaine published from 2000 to 2023. The publication types were limited to original articles and reviews. We utilized CiteSpace, VOSviewer, and the online bibliometric platform to visualize and analyze the collected data. Results: A total of 4,147 publications related to ropivacaine were identified, with a consistent growth in annual publications over time. The United States emerged as the most influential country in the field of ropivacaine research, and ranked first in the annual number of publications until 2014. China surpassed the United States in the number of publications for the first time in 2015 and has remained in first place ever since. Of all the research institutions in the field of ropivacaine, University of Copenhagen in Denmark exhibited the highest impact. Brian M. Ilfeld and Casati A were identified as the most influential authors. The leading researchers in this field primarily focused their publications on continuous nerve blocks for postoperative analgesia and ultrasound-guided nerve block techniques. An analysis of reference co-citation clustering revealed 18 distinct research clusters, with current hotspots including erector spinae plane block, dexmedetomidine, quadratus lumborum block, labor analgesia, and mitochondrial respiration. Additionally, keywords analysis indicated that "dexmedetomidine as an adjuvant in nerve blocks" currently represents a research hotspot in the field of ropivacaine. Conclusion: This bibliometric analysis provides a comprehensive overview of the research landscape in ropivacaine. It reveals research trends in this field and emerging areas for future investigations. Notably, the application of ropivacaine in nerve blocks is a prominent focus in current research, with a particular emphasis on its combination with dexmedetomidine.
RESUMEN
Background: Osteoporosis is characterized by diminished bone density and quality, compromised bone microstructure, and increased bone fragility, culminating in a heightened risk of fracture. Relatively few attempts have been made to survey the breadth of osteoporosis research using bibliometric approaches. This study aims to delineate the current landscape of osteoporosis research, offering clarity and visualization, while also identifying potential future directions for investigation. Methods: We retrieved and filtered articles and reviews pertaining to osteoporosis from the Web of Science Core Collection database, specifically the Science Citation Index Expanded (SCI-E) edition, spanning the years 2014 to 2023. Informatics tools such as CiteSpace and VOSviewer were employed to dissect the intellectual framework, discern trends, and pinpoint focal points of interest within osteoporosis research. Results: Our dataset comprised 33,928 osteoporosis-related publications, with a notable surge in annual publication numbers throughout the last decade. China and the United States lead in terms of research output. The University of California System contributed substantially to this body of work, with Amgen demonstrating the highest degree of centrality within the network. Cooper Cyrus emerged as a pivotal figure in the field. An analysis of highly-cited studies, co-citation networks, and keyword co-occurrence revealed that recent years have predominantly concentrated on elucidating mechanisms underlying osteoporosis, as well as its diagnosis, prevention, and treatment strategies. Burst detection analyses of citations and keywords highlighted osteoblasts, sarcopenia, gut microbiota, and denosumab as contemporary hotspots within osteoporosis research. Conclusion: This bibliometric analysis has provided a visual representation of the fundamental knowledge structure, prevailing trends, and key focal areas within osteoporosis research. The identification of osteoblasts, sarcopenia, gut microbiota, and denosumab as current hotspots may guide future research endeavors. Continued efforts directed at understanding the mechanisms, fracture outcomes, diagnostics, and therapeutics related to osteoporosis are anticipated to deepen our comprehension of this complex disease.
RESUMEN
Postoperative cognitive dysfunction (POCD) is a prevalent neurological complication that can impair learning and memory for days, months, or even years after anesthesia/surgery. POCD is strongly associated with an altered composition of the gut microbiota (dysbiosis), but the accompanying metabolic changes and their role in gut-brain communication and POCD pathogenesis remain unclear. Here, the present study reports that anesthesia/surgery in aged mice induces elevated intestinal indoleamine 2,3-dioxygenase (IDO) expression and activity, which shifts intestinal tryptophan (TRP) metabolism toward more IDO-catalyzed kynurenine (KYN) and less gut bacteria-catabolized indoleacetic acid (IAA). Both anesthesia/surgery and intraperitoneal KYN administration induce increased KYN levels that correlate with impaired spatial learning and memory, whereas dietary IAA supplementation attenuates the anesthesia/surgery-induced cognitive impairment. Mechanistically, anesthesia/surgery increases interferon-γ (IFN-γ)-producing group 1 innate lymphoid cells (ILC1) in the small intestine lamina propria and elevates intestinal IDO expression and activity, as indicated by the higher ratio of KYN to TRP. The IDO inhibitor 1-MT and antibodies targeting IFN-γ or ILCs mitigate anesthesia/surgery-induced cognitive dysfunction, suggesting that intestinal ILC1 expansion and the ensuing IFN-γ-induced IDO upregulation may be the primary pathway mediating the shift to the KYN pathway in POCD. The ILC1-KYN pathway in the intestine could be a promising therapeutic target for POCD.
RESUMEN
Background: White-matter hyperintensity (WMH) is the key magnetic resonance imaging (MRI) marker of cerebral small-vessel disease (CSVD). This study aimed to investigate whether habitat analysis based on physiologic MRI parameters can predict the progression of WMH and cognitive decline in CSVD. Methods: Diffusion- and perfusion-weighted imaging data were obtained from 69 patients with CSVD at baseline and at 1-year of follow-up. The white-matter region was classified into constant WMH, growing WMH, shrinking WMH, and normal-appearing white matter (NAWM) according to the T2-fluid-attenuated inversion recovery (FLAIR) sequences images at the baseline and follow-up. We employed k-means clustering on a voxel-wise basis to delineate WMH habitats, integrating multiple diffusion metrics and cerebral blood flow (CBF) values derived from perfusion data. The WMH at the baseline and the predicted WMH from the habitat analysis were used as regions of avoidance (ROAs). The decreased rate of global efficiency for the whole brain structural connectivity was calculated after removal of the ROA. The association between the decreased rate of global efficiency and Montreal Cognitive Assessment (MoCA) and mini-mental state examination (MMSE) scores was evaluated using Pearson correlation coefficients. Results: We found that the physiologic MRI habitats with lower fractional anisotropy and CBF values and higher mean diffusivity, axial diffusivity, and radial diffusivity values overlapped considerably with the new WMH (growing WMH of baseline) after a 1-year follow-up; the accuracy of distinguishing growing WMH from NAWM was 88.9%±12.7% at baseline. Similar results were also found for the prediction of shrinking WMH. Moreover, after the removal of the predicted WMH, a decreased rate of global efficiency had a significantly negative correlation with the MoCA and MMSE scores at follow-up. Conclusions: This study revealed that a habitat analysis combining perfusion with diffusion parameters could predict the progression of WMH and related cognitive decline in patients with CSVD.
RESUMEN
Objective: We utilized bibliometric and data visualization techniques to discern the primary research domains and emerging frontiers in the field of adult hippocampal neurogenesis (AHN). Methods: We systematically searched the Web of Science database for AHN-related articles published between 2004 and 2023. The retrieved articles were filtered based on publication types (articles and reviews) and language (English). We employed CiteSpace, VOSviewer, and the online bibliometric platform (bibliometric.com) to visualize and analyze the collected data. Results: In total, 1,590 AHN-related publications were discovered, exhibiting a steady increase in yearly publications over time. The United States emerged as the leading contributor in AHN research in terms of both publication quantity and national influence. Among all research institutions in the field of AHN, the University of California System exhibited the highest impact. Kempermann, Gerd was the most active author. The publications of the top three active authors primarily focused on the functions of AHN, and reversing hippocampal damage and cognitive impairment by improving AHN. An analysis of reference co-citation clustering revealed 8 distinct research clusters, and the notable ones included "adult hippocampal neurogenesis," "neurogenesis," "hippocampus," "dentate gyrus," "neural stem cell," and "depression." Additionally, a burst keyword detection indicated that 'anxiety' is a current research hotspot in the field of AHN. Conclusion: This in-depth bibliographic assessment of AHN offers a deeper insight into the present research hotspots in the field. The association between AHN and cognitive diseases, such as Alzheimer's disease (AD) and anxiety, has emerged as a prominent research hotspot.
RESUMEN
Cinnamic ester is a common and abundant chemical substance, which can be extracted from natural plants. Compared with traditional esters, cinnamic ester contains α,ß-unsaturated carbonyl structure with multiple reactive sites, resulting in more abundant reactivities and chemical structures. Here, a versatile polymerization-induced emission (PIE) is successfully demonstrated through Barbier polymerization of cinnamic ester. Attributed to its abundant reactivities of α,ß-unsaturated carbonyl structure, Barbier polymerization of cinnamic esters with different organodihalides gives polyalcohol and polyketone via 1,2-addition and 1,4-addition, respectively, which is also confirmed by small molecular model reactions. Meanwhile, these organodihalides dependant polyalcohol and polyketone exhibit different non-traditional intrinsic luminescence (NTIL) from aggregation-induced emission (AIE) type to aggregation-caused quenching (ACQ) type, where novel PIE luminogens (PIEgens) are revealed. Further potential applications in explosive detection are carried out, where it achieves TNT detection sensitivity atâ ppm level in solution and ng level on the test paper. This work therefore expands the structure and functionality libraries of monomer, polymer and NTIL, which might cause inspirations to different fields including polymer chemistry, NTIL, AIE and PIE.
RESUMEN
BACKGROUND: Postoperative pain is common in pediatric urological surgery. The study assess the impact of perioperative intravenous infusion of low-dose esketamine on postoperative pain in pediatric urological surgery. METHODS: Pediatric patients (n = 80) undergoing urological surgery were randomized into four groups. Patients in the control group were administered an analgesic pump containing only hydromorphone at a dose of 0.1 mg/kg (Hydromorphone Group 1, H1) or 0.15 mg/kg (Hydromorphone Group 2, H2). Patients in the experimental group were injected intravenously with 0.3 mg/kg of esketamine (Esketamine group 1, ES1) or equal volume of saline (Esketamine Group 2, ES2) during anesthesia induction. Esketamine 1.0 mg/kg and hydromorphone 0.1 mg/kg were added to the analgesic pump. Face, Leg, Activity, Crying, and Comfort (FLACC) scale or the Numerical Rating Scale (NRS) and adverse effects were recorded at 2, 6, 24, and 48 h postoperatively. Additionally, total and effective PCA button presses were recorded. RESULTS: In comparison to the H1 group, the pain scores were notably reduced at all postoperative time points in both the ES1 and H2 groups. The ES2 group exhibited lower pain scores only at 24 and 48 h postoperatively. When compared to the H2 group, there were no significant differences in pain scores at various postoperative time points in the ES2 group. However, the ES1 group demonstrated significantly lower pain scores at 6, 24 and 48 h postoperatively, and these scores were also significantly lower than those observed in the ES2 group. The total and effective number of PCA button presses in the ES1, ES2 and H2 group were lower than that in the H1 group (P < 0.001). The incidence of adverse effects within 48 h after surgery was 15% in ES1, 22% in ES2, 58% in H1, and 42% in H2, respectively (P = 0.021). CONCLUSIONS: The use of low-dose esketamine infusion in analgesia pump can effectively alleviates postoperative pain in pediatric urological patients, leading to a significant reduction in the number of analgesic pump button press. The combined approach of perioperative anesthesia induction and analgesia pump administration is recommended for optimal pain management in these patients. TRIAL REGISTRATION: Chinese Clinical Trial Registry- ChiCTR2300073879 (24/07/2023).
Asunto(s)
Analgesia Controlada por el Paciente , Hidromorfona , Ketamina , Humanos , Niño , Estudios Prospectivos , Analgesia Controlada por el Paciente/efectos adversos , Dolor Postoperatorio/etiología , AnalgésicosRESUMEN
Non-traditional intrinsic luminescent (NTIL) polymer is an emerging field, and its color-tunable modification is highly desirable but still rarely investigated. Here, a click chemistry approach for the color-tunable modifications of NTIL polymers by introducing clickable polymerization-induced emission luminogen (PIEgen), is demonstrated. Through Cu-catalyzed azide-alkyne cycloaddition click chemistry, a series of PIEgens is successful prepared, which is further polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Interestingly, after clickable modification, these monomers are nonemissive in both solution and aggregation states; while, the corresponding polymers exhibit intriguing aggregation-induced emission (AIE) characteristics, confirming their PIEgen characteristics. By varying alkynyl substitutions, color-tunable NTIL polymers are achieved with emission wavelength varying from 448 to 498 nm, revealing a series of PIEgens and verifying the importance of modification of NTIL polymers. Further luminescence energy transfer application is carried out as well. This work therefore designs a series of clickable PIEgens and opens a new avenue for the modification of NTIL polymers via click chemistry, which may cause inspirations to the research fields including luminescent polymer, NTIL, click chemistry, AIE and modification.
Asunto(s)
Química Clic , Color , Luminiscencia , Polimerizacion , Polímeros , Polímeros/química , Polímeros/síntesis química , Estructura Molecular , Catálisis , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Azidas/química , Alquinos/químicaRESUMEN
Purpose: To explore the potential therapeutic strategies of different types of neuropathic pain (NP) and to summarize the cutting-edge novel approaches for NP treatment based on the clinical trials registered on ClinicalTrials.gov. Methods: The relevant clinical trials were searched using ClinicalTrials.gov Dec 08, 2022. NP is defined as a painful condition caused by neurological lesions or diseases. All data were obtained and reviewed by the investigators to confirm whether they were related to the current topic. Results: A total of 914 trials were included in this study. They were divided into painful diabetic neuropathy (PDN), postherpetic neuralgia (PHN), sciatica (SC), peripheral nerve injury-related NP (PNI), trigeminal neuralgia (TN), chemotherapy-induced NP (CINP), general peripheral NP (GPNP) and spinal cord injury NP (SCI-NP). Potential novel therapeutic strategies, such as novel drug targets and physical means, were discussed for each type of NP. Conclusion: NP treatment is mainly dominated by drug therapy, and physical means have become increasingly popular. It is worth noting that novel drug targets, new implications of conventional medicine, and novel physical means can serve as promising strategies for the treatment of NP. However, more attention needs to be paid to the challenges of translating research findings into clinical practice.
RESUMEN
AIMS: To visualize the trends and hotspots in the scientific research related to vascular cognitive impairment (VCI) quantitatively and qualitatively. METHODS: Cross-sectional bibliometric analysis of publications that related to VCI was conducted. Publications were found by searching in the Web of Science Core Collection database (WoSCC) - Edition: Science Citation Index Expanded (SCI-Expanded) from January 2000 to December 2021. Publication type was restricted to article and review in the English language. The downloaded data were screened and analyzed in January 2022. RESULTS: In total, 16,264 publications were identified, with a steady increase in annual publications. The United States was the leading country in VCI research regarding publication numbers and national influence. National Institute of Aging had the highest influence among all the institutes in the field of VCI. Philip Scheltens was the most active author. The top five active authors' publications focused on pathobiology, neuroimaging standards, risk factors, prevention, and the standard diagnosis of vascular dementia (VaD). A co-cited publication clustering resulted in 19 main clusters, and the prevention, blood-brain barrier, cholesterol, cerebral amyloid angiopathy, and VaD were the top 5 clusters. Moreover, burst keywords detection revealed that the "small vessel disease" is the current hotspot in the field of VCI. CONCLUSIONS: This bibliometric analysis mapped the overall research structure of VCI and analyzed the current research trends and hotspots for future studies orientation. Neuroimaging, risk factors detection, and pathobiology are the current trends in VCI research. Small vessel disease and its mechanisms are the current hotspots of VCI research.
Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Humanos , Estudios Transversales , Bibliometría , Barrera Hematoencefálica , Disfunción Cognitiva/epidemiologíaRESUMEN
Purpose: Herpes zoster infection, with its considerable burden to individuals and society, remains a challenge around the world. However, to the knowledge of the authors, little bibliometric quantitative or qualitative analysis has been carried out to evaluate herpes zoster research. This study aimed to use a bibliometric analysis to evaluate current publication trends and hotspots on herpes zoster research worldwide, in order to advance research in this field. Methods: Relevant publications from January 2012 to December 2021 were collected from the Web of Science Core Collection database. Citespace (V5.8.R3) was used to analyze the research points, including publication countries, institutions and authors, cited author, cited reference and their clustering, and keyword co-occurrence, and burst keyword to acquire research trends and hotspots. Results: A total of 9,259 publications were obtained, with a steady increase in the number of annual publications during the decade. Articles were the main type of publication. The United States is the leading country in this research, and the University of Colorado has the highest influence in this field. Oxman is the most representative author, with a main research interest in herpes zoster vaccines. The top five cited authors' publications focused on herpes zoster vaccines, molecular mechanisms, and postherpetic neuralgia. A co-citation map resulted 19 main clusters, and revealed that vaccines, postherpetic neuralgia, treatments, varicella zoster virus and its mechanisms, and epidemiology of herpes zoster were the current research focus after clustering co-cited publications. Human herpesviruses, antiviral prophylaxis, rheumatoid arthritis, recombinant zoster vaccine, varicella vaccination and postherpetic neuralgia were the top clusters after co-occurrence keywords analysis. Moreover, burst keywords detection showed that the subunit vaccine was the new hotspot in the field of herpes zoster. Conclusion: This bibliometric study defined the overall prospects in the field of herpes zoster and provided valuable instruction for the ongoing research. The keyword "subunit vaccine" indicated that a vaccine for herpes zoster prevention was the hotspot. Efforts to prevent varicella zoster virus infection will be essential to improve herpes zoster outcomes.
RESUMEN
Study Objectives: To evaluate sepsis-associated encephalopathy (SAE) research and to quantitatively and qualitatively predict research hot spots using bibliometric analysis. Methods: We extracted relevant publications from the Web of Science Core Collection on July 28, 2021. We investigated the retrieved data by bibliometric analysis (e.g. co-cited and cluster analysis, keyword co-occurrence) using the software CiteSpace and VOSviewer, the Online Analysis Platform of Literature Metrology (http://bibliometric.com/) and Bibliometrix to analyse and predict the trends and hot spots in this field. Main Results: We identified 1,582 published articles and reviews on SAE from 2001 to 2021. During this period, the number of manuscripts on SAE increased steadily and peaked in 2021. The USA and China were the leading countries that had a critical impact on SAE research. Among all institutions, Vanderbilt University and Pittsburgh University held leading positions and became central in the collaboration network. Among all the journals, Critical Care Medicine published the maximum number of manuscripts in the field of SAE within 20 years. Dal-Pizzol Felipe was the most productive author (61 papers) and received the largest number of citations (930 citations). Co-citation cluster analysis revealed that the most popular terms on SAE in the manner of cluster labels were critical illness, sepsis-associated encephalopathy, polymicrobial sepsis, posterior reversible encephalopathy syndrome, rat brain, intensive care unit, prior sepsis, molecular hydrogen, inflammation drive, metabolic encephalopathies, delirium pathophysiology, and clinical neuroscience. Keyword burst detection indicated that neuroinflammation, blood-brain barrier (BBB) and mitochondria dysfunction were the current research hot spots. Conclusions: Our study revealed that neuroinflammation, blood-brain barrier, and mitochondria dysfunction had been the research foci of SAE over the past 20 years. These have emerged as the basis for transformation from basic research to clinical application in finding effective methods for the prevention and treatment of SAE.
RESUMEN
BACKGROUND: Although electroacupuncture is widely used in chronic pain management, it is quite controversial due to its unclear mechanism. We hypothesised that EA alleviates pain by inhibiting degradation of the ecto-nucleotidase prostatic acid phosphatase (PAP) and facilitating ATP dephosphorylation in dorsal root ganglions (DRGs). METHODS: We applied EA in male C57 mice subjected to chronic constriction injury (CCI) and assessed extracellular ATP and 5'-nucleotidease expression in DRGs. Specifically, we used a luminescence assay, quantitative reverse transcriptase-polymerase chain reaction, Western blotting, immunohistochemistry and nociceptive-related behavioural changes to gather data, and we tested for effects after PAP expression was inhibited with an adeno-associated virus (AAV). Moreover, membrane PAP degradation was investigated in cultured DRG neurons and the inhibitory effects of EA on this degradation were assessed using immunoprecipitation. RESULTS: EA treatment alleviated CCI surgery-induced mechanical pain hypersensitivity. Furthermore, extracellular ATP decreased significantly in both the DRGs and dorsal horn of EA-treated mice. PAP protein but not mRNA increased in L4-L5 DRGs, and inhibition of PAP expression via AAV microinjection reversed the analgesic effect of EA. Membrane PAP degradation occurred through a clathrin-mediated endocytosis pathway in cultured DRG neurons; EA treatment inhibited the phosphorylation of adaptor protein complex 2, which subsequently reduced the endocytosis of membrane PAP. CONCLUSIONS: EA treatment alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice by inhibiting membrane PAP degradation via reduced endocytosis and subsequently promote ATP dephosphorylation in DRGs. SIGNIFICANCE: In a mouse model of chronic pain, electroacupuncture treatment increased levels of prostatic acid phosphatase (PAP: an ecto-nucleotidase known to relieve pain hypersensitivity) by inhibiting PAP degradation in dorsal root ganglions. This promoted extracellular ATP dephosphorylation, inhibited glia activation and eventually alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice. Our findings represent an important step forward in clarifying the mechanisms of pain relief afforded by acupuncture treatment.
Asunto(s)
Electroacupuntura , Neuralgia , Traumatismos de los Nervios Periféricos , Fosfatasa Ácida , Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo , Animales , Ganglios Espinales/metabolismo , Masculino , Ratones , Neuralgia/metabolismo , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
PURPOSE: Aging populations and increasing quality of life requirements have attracted growing efforts to study chronic postsurgical pain (CPSP). However, a diverse range of factors are involved in CPSP development, which complicates efforts to predict and treat this disease. To advance research in this field, our study aimed to use bibliometric analysis to quantitatively and qualitatively evaluate CPSP research and predict research hot spots over the last 10 years. METHODS: Relevant publications between 2011 and 2020 were extracted from the Web of Science Core Collection database. CiteSpace software (v5.7.R2) and the Online Analysis Platform of Literature Metrology were used to analyze research attributes including countries and authors, keywords and co-occurrence, and burst detection to predict trends and hot spots. RESULTS: A total of 2493 publications were collected with the number of annual publications showing nearly threefold increase over the past decade. Articles were the primary publication type with the United States as the leading country and the center of national collaboration. Johns Hopkins University provided the leading influence within the CPSP field. Postoperative pain, multimodal analgesia, quality of life, opioid, microglia, cesarean delivery, inguinal hernia, chronification, genetic polymorphism, and lidocaine were the top 10 clusters in co-occurrence cluster analysis. Moreover, burst detection was shown that epidural analgesia, nerve injury, total hip arthroplasty were the new hot spots within the CPSP field. CONCLUSION: Bibliometric mapping not only defined the overall structure of CPSP-related research but its collective information provides crucial assistance to direct ongoing research efforts. The prominent keywords including "risk factor" and "multimodal analgesia" indicate that CPSP prevention and new treatment methods remain hot spots. Nonetheless, the recognition that CPSP is complex and changeable, proposes comprehensive biopsychosocial approaches are needed, and these will be essential to improve CPSP interventions and outcomes.
RESUMEN
Background: Although major joint replacement surgery has a high overall success rate, postoperative cognitive dysfunction (POCD) is a common complication after anesthesia and surgery, increasing morbidity and mortality. Identifying POCD risk factors would be helpful to prevent and decrease the occurrence of POCD. We hypothesized that preoperative chronic pain increases the risk of POCD. Methods: A single-center, observational, prospective cohort study was conducted from January 2018 to March 2020. All consecutive elderly patients (>65 years) who underwent elective total hip arthroplasty or hemiarthroplasty with general anesthesia by the same surgeon were enrolled. The patients underwent neuropsychological testing preoperatively and at 7 days and 2 months after surgery. To determine POCD, a nonsurgical control group was recruited from the general community. Results: Of the 141 patients who finished the neuropsychological testing 7 days after surgery, 61 (43.2%) had preoperative chronic pain. Of the 61 patients, 17 (27.9%) developed POCD; of the 79 patients with no chronic pain, 10 (12.7%) had developed POCD by 7 days after surgery. Multivariate logistic regression analysis identified preoperative chronic pain as a risk factor of POCD assessed 7 days after surgery (odds ratio 6.527; P = 0.009). There was no significant difference in the POCD incidence 2 months after surgery between patients with and without preoperative chronic pain. Conclusion: Preoperative chronic pain was a risk factor of developing POCD within 7 days after surgery in elderly patients following hip joint replacement surgery. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03393676].
RESUMEN
INTRODUCTION: This study investigated whether transcutaneous electrical acupuncture point stimulation (TEAS) at PC6 can reduce the proportion of elderly patients experiencing a drop of ⩾4% in peripheral capillary oxygen saturation (SpO2) while undergoing colonoscopy under sedation. METHODS: A total of 32 elderly patients (aged ⩾ 65 years) scheduled for colonoscopy were randomly assigned in a 1:1 ratio to receive either real or sham TEAS (treatment or control groups, respectively). Each patient received oxygen (2 L/min) delivered routinely via nasal cannula. The treatment group was given TEAS at PC6 for 20 min at 2 Hz frequency and 6 mA intensity; the control group underwent the same procedures but with zero frequency/intensity. SpO2 and other physiological parameters were measured prior to sedation and colonoscopy (baseline) and at seven other timepoints through departure from recovery. Depth of anesthesia was measured using a Narcotrend monitor. RESULTS: Significantly fewer patients in the treatment group experienced a ⩾4% decrease from baseline SpO2 (2/16) than patients in the control group (10/16; p = 0.004). The two groups were comparable with regard to respiratory rate, systolic and diastolic blood pressures, mean arterial pressure, and heart rate. CONCLUSION: TEAS applied at PC6 with 2 Hz frequency was feasible and may be helpful in reducing the rate of hypoxia in elderly patients during colonoscopy.Trial registration number: NCT03775122 (ClinicalTrials.gov).
Asunto(s)
Puntos de Acupuntura , Colonoscopía/efectos adversos , Oxígeno/metabolismo , Manejo del Dolor , Estimulación Eléctrica Transcutánea del Nervio , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Estudios ProspectivosRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Biological membrane channels, considered as molecular gatekeepers, control the transportation of molecules and ions across live cell membranes. Developing synthetic passable channels with predictable structures, high transport efficiency, and low cytotoxicity on live cells is of great interest for replicating the functions of endogenous protein channels, but remains challenging. The development of DNA nanotechnology provides possible solutions for making synthetic channels with precise structures and controllable functionalization. Therefore, in this work, we constructed a phosphorothioate-modified DNA nanopore able to structurally mimic biological channels for molecular transport across live cell membranes. With its stable structure with small hollow size (<2 nm) and the ability to interact with the lipid molecules, this DNA nanopore could show stable insertion into the plasma membrane. We further proved that this membrane-spanning channel could transport ions and antitumor drugs to neurons and cancer cells, respectively, and do so within a certain time window. We expect that this live cell membrane-spanning synthetic DNA nanopore will provide a tool for studying cellular communication, building synthetic cells, and achieving controlled transmembrane transport to cells.
Asunto(s)
Biomimética , ADN , Nanoporos , Membrana Celular , NanotecnologíaRESUMEN
A plethora of evidence has suggested that gut microbiota is involved in the occurrence and development of postmenopausal osteoporosis (PMO). It has been suggested that neuropeptide Y (NPY) modulates the bone metabolism through Y1 receptor (Y1R), and might be associated with gut microbiota. The present study aims to evaluate the anti-osteoporotic effects of Y1R antagonist and to investigate the potential mechanism by which Y1R antagonist regulates gut microbiota. In this study, eighteen female rats were randomly divided into three groups: the sham surgery (SHAM) group, the ovariectomized (OVX) group, and OVX+BIBO3304 group. After 6 weeks following surgery, Y1R antagonist BIBO3304 was administered to the rats in OVX+BIBO3304 group for 7 days. The bone microstructure and serum biochemical parameters were measured at 12 weeks after operation. The differences in the gut microbiota were analyzed by 16S rDNA gene sequencing. Heat-map and Spearman's correlation analyses were constructed to investigate the correlations between microbiota and bone metabolism-related parameters. The results indicated that OVX+BIBO3304 group showed significantly higher BMD, BV/TV, Tb.Th, Tb.N, Conn.D, and serum Ca2+ level than those in OVX group. Additionally, Y1R antagonist changed the gut microbiota composition with lower Firmicutes/Bacteroidetes ratio and higher proportions of some probiotics, including Lactobacillus. The correlation analysis showed that the changes of gut microbiota were closely associated with bone microstructure and serum Ca2+ levels. Our results suggested that Y1R antagonist played an anti-osteoporotic effect and regulated gut microbiota in OVX rats, indicating the potential to utilize Y1R antagonist as a novel treatment for PMO.