Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; PP2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857143

RESUMEN

Real-time estimation of patient cardiovascular states, including cardiac output and systemic vascular resistance, is necessary for personalized hemodynamic monitoring and management. Highly invasive measurements enable reliable estimation of these states but increase patient risk. Prior methods using minimally invasive measurements reduce patient risk but have produced unreliable estimates limited due to trade-offs in accuracy and time resolution. Our objective was to develop an approach to estimate cardiac output and systemic vascular resistance with both a high time resolution and high accuracy from minimally invasive measurements. Using the two-element Windkessel model, we formulated a state-space method to estimate a dynamic time constant - the product of systemic vascular resistance and compliance - from arterial blood pressure measurements. From this time constant, we derived proportional estimates of systemic vascular resistance and cardiac output. We then validated our method with a swine cardiovascular dataset. Our estimates produced using arterial blood pressure measurements not only closely align with those using highly invasive measurements, but also closely align when derived from three separate locations on the arterial tree. Moreover, our estimates predictably change in response to standard cardiovascular drugs. Overall, our approach produces reliable, real-time estimates of cardiovascular states crucial for monitoring and control of the cardiovascular system.

2.
BJA Open ; 10: 100276, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571816

RESUMEN

Background: The alpha-2 adrenergic agonist dexmedetomidine induces EEG patterns resembling those of non-rapid eye movement (NREM) sleep. Fulfilment of slow wave sleep (SWS) homeostatic needs would address the assumption that dexmedetomidine induces functional biomimetic sleep states. Methods: In-home sleep EEG recordings were obtained from 13 healthy participants before and after dexmedetomidine sedation. Dexmedetomidine target-controlled infusions and closed-loop acoustic stimulation were implemented to induce and enhance EEG slow waves, respectively. EEG recordings during sedation and sleep were staged using modified American Academy of Sleep Medicine criteria. Slow wave activity (EEG power from 0.5 to 4 Hz) was computed for NREM stage 2 (N2) and NREM stage 3 (N3/SWS) epochs, with the aggregate partitioned into quintiles by time. The first slow wave activity quintile served as a surrogate for slow wave pressure, and the difference between the first and fifth quintiles as a measure of slow wave pressure dissipation. Results: Compared with pre-sedation sleep, post-sedation sleep showed reduced N3 duration (mean difference of -17.1 min, 95% confidence interval -30.0 to -8.2, P=0.015). Dissipation of slow wave pressure was reduced (P=0.02). Changes in combined durations of N2 and N3 between pre- and post-sedation sleep correlated with total dexmedetomidine dose, (r=-0.61, P=0.03). Conclusions: Daytime dexmedetomidine sedation and closed-loop acoustic stimulation targeting EEG slow waves reduced N3/SWS duration and measures of slow wave pressure dissipation on the post-sedation night in healthy young adults. Thus, the paired intervention induces sleep-like states that fulfil certain homeostatic NREM sleep needs in healthy young adults. Clinical trial registration: ClinicalTrials.gov NCT04206059.

3.
A A Pract ; 17(7): e01698, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37409746

RESUMEN

The effects of critical illness on electroencephalographic (EEG) signatures of sedatives have not been described, limiting the use of EEG-guided sedation in the intensive care unit (ICU). We report the case of a 36-year-old man recovering from acute respiratory distress syndrome (ARDS). Severe ARDS was characterized by slow-delta (0.1-4 Hz) and theta (4-8 Hz) oscillations but lacked the alpha (8-14 Hz) power expected during propofol sedation in a patient of this age. The alpha power emerged as ARDS resolved. This case raises the question of whether inflammatory states can alter EEG signatures during sedation.


Asunto(s)
Anestesia , Propofol , Síndrome de Dificultad Respiratoria , Masculino , Humanos , Adulto , Propofol/efectos adversos , Hipnóticos y Sedantes/efectos adversos , Electroencefalografía
4.
Anesth Analg ; 136(6): e37-e38, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37205821
5.
Br J Anaesth ; 130(5): 557-566, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967282

RESUMEN

BACKGROUND: Conscious states are typically inferred through responses to auditory tasks and noxious stimulation. We report the use of a stimulus-free behavioural paradigm to track state transitions in responsiveness during dexmedetomidine sedation. We hypothesised that estimated dexmedetomidine effect-site (Ce) concentrations would be higher at loss of responsiveness (LOR) compared with return of responsiveness (ROR), and both would be lower than comparable studies that used stimulus-based assessments. METHODS: Closed-Loop Acoustic Stimulation during Sedation with Dexmedetomidine data were analysed for secondary analysis. Fourteen healthy volunteers were asked to perform the breathe-squeeze task of gripping a dynamometer when inspiring and releasing it when expiring. LOR was defined as five inspirations without accompanied squeezes; ROR was defined as the return of five inspirations accompanied by squeezes. Brain states were monitored using 64-channel EEG. Dexmedetomidine was administered as a target-controlled infusion, with Ce estimated from a pharmacokinetic model. RESULTS: Counter to our hypothesis, mean estimated dexmedetomidine Ce was lower at LOR (0.92 ng ml-1; 95% confidence interval: 0.69-1.15) than at ROR (1.43 ng ml-1; 95% confidence interval: 1.27-1.58) (paired t-test; P=0.002). LOR was characterised by progressively increasing fronto-occipital EEG power in the 0.5-8 Hz band and loss of occipital alpha (8-12 Hz) and global beta (16-30 Hz) power. These EEG changes reverted at ROR. CONCLUSIONS: The breathe-squeeze task can effectively track changes in responsiveness during sedation without external stimuli and might be more sensitive to state changes than stimulus-based tasks. It should be considered when perturbation of brain states is undesirable. CLINICAL TRIAL REGISTRATION: NCT04206059.


Asunto(s)
Dexmedetomidina , Hipnóticos y Sedantes , Humanos , Encéfalo , Sedación Consciente , Estado de Conciencia , Electroencefalografía , Hipnóticos y Sedantes/farmacología
6.
Clin Neurophysiol ; 147: 31-44, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634533

RESUMEN

OBJECTIVE: To investigate the feasibility of passive functional mapping in the receptive language cortex during general anesthesia using electrocorticographic (ECoG) signals. METHODS: We used subdurally placed ECoG grids to record cortical responses to speech stimuli during awake and anesthesia conditions. We identified the cortical areas with significant responses to the stimuli using the spectro-temporal consistency of the brain signal in the broadband gamma (BBG) frequency band (70-170 Hz). RESULTS: We found that ECoG BBG responses during general anesthesia effectively identify cortical regions associated with receptive language function. Our analyses demonstrated that the ability to identify receptive language cortex varies across different states and depths of anesthesia. We confirmed these results by comparing them to receptive language areas identified during the awake condition. Quantification of these results demonstrated an average sensitivity and specificity of passive language mapping during general anesthesia to be 49±7.7% and 100%, respectively. CONCLUSION: Our results demonstrate that mapping receptive language cortex in patients during general anesthesia is feasible. SIGNIFICANCE: Our proposed protocol could greatly expand the population of patients that can benefit from passive language mapping techniques, and could eliminate the risks associated with electrocortical stimulation during an awake craniotomy.


Asunto(s)
Mapeo Encefálico , Electrocorticografía , Humanos , Electrocorticografía/métodos , Mapeo Encefálico/métodos , Encéfalo/cirugía , Lenguaje , Anestesia General , Corteza Cerebral/fisiología
7.
Anesth Analg ; 136(1): 140-151, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130079

RESUMEN

BACKGROUND: Delirium is an acute syndrome characterized by inattention, disorganized thinking, and an altered level of consciousness. A reliable biomarker for tracking delirium does not exist, but oscillations in the electroencephalogram (EEG) could address this need. We evaluated whether the frequencies of EEG oscillations are associated with delirium onset, severity, and recovery in the postoperative period. METHODS: Twenty-six adults enrolled in the Electroencephalography Guidance of Anesthesia to Alleviate Geriatric Syndromes (ENGAGES; ClinicalTrials.gov NCT02241655) study underwent major surgery requiring general anesthesia, and provided longitudinal postoperative EEG recordings for this prespecified substudy. The presence and severity of delirium were evaluated with the confusion assessment method (CAM) or the CAM-intensive care unit. EEG data obtained during awake eyes-open and eyes-closed states yielded relative power in the delta (1-4 Hz), theta (4-8 Hz), and alpha (8-13 Hz) bands. Discriminability for delirium presence was evaluated with c-statistics. To account for correlation among repeated measures within patients, mixed-effects models were generated to assess relationships between: (1) delirium severity and EEG relative power (ordinal), and (2) EEG relative power and time (linear). Slopes of ordinal and linear mixed-effects models are reported as the change in delirium severity score/change in EEG relative power, and the change in EEG relative power/time (days), respectively. Bonferroni correction was applied to confidence intervals (CIs) to account for multiple comparisons. RESULTS: Occipital alpha relative power during eyes-closed states offered moderate discriminability (c-statistic, 0.75; 98% CI, 0.58-0.87), varying inversely with delirium severity (slope, -0.67; 98% CI, -1.36 to -0.01; P = .01) and with severity of inattention (slope, -1.44; 98% CI, -2.30 to -0.58; P = .002). Occipital theta relative power during eyes-open states correlated directly with severity of delirium (slope, 1.28; 98% CI, 0.12-2.44; P = .007), inattention (slope, 2.00; 98% CI, 0.48-3.54; P = .01), and disorganized thinking (slope, 3.15; 98% CI, 0.66-5.65; P = .01). Corresponding frontal EEG measures recapitulated these relationships to varying degrees. Severity of altered level of consciousness correlated with frontal theta relative power during eyes-open states (slope, 11.52; 98% CI, 6.33-16.71; P < .001). Frontal theta relative power during eyes-open states correlated inversely with time (slope, -0.05; 98% CI, -0.12 to -0.04; P = .002). CONCLUSIONS: Presence, severity, and core features of postoperative delirium covary with spectral features of the EEG. The cost and accessibility of EEG facilitate the translation of these findings to future mechanistic and interventional trials.


Asunto(s)
Delirio , Delirio del Despertar , Adulto , Humanos , Anciano , Trastornos de la Conciencia , Electroencefalografía/métodos , Cognición
8.
Clin Neurophysiol ; 142: 125-132, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030576

RESUMEN

OBJECTIVE: Periods of low-amplitude electroencephalographic (EEG) signal (quiescence) are present during both anesthetic-induced burst suppression (BS) and postictal generalized electroencephalographic suppression (PGES). PGES following generalized seizures induced by electroconvulsive therapy (ECT) has been previously linked to antidepressant response. The commonality of quiescence during both BS and PGES motivated trials to recapitulate the antidepressant effects of ECT using high doses of anesthetics. However, there have been no direct electrographic comparisons of these quiescent periods to address whether these are distinct entities. METHODS: We compared periods of EEG quiescence recorded from two human studies: BS induced in 29 healthy adult volunteers by isoflurane general anesthesia and PGES in 11 patients undergoing right unilateral ECT for treatment-resistant depression. An automated algorithm allowed detection of EEG quiescence based on a 10-microvolt amplitude threshold. Spatial, spectral, and temporal analyses compared quiescent epochs during BS and PGES. RESULTS: The median (interquartile range) voltage for quiescent periods during PGES was greater than during BS (1.81 (0.22) microvolts vs 1.22 (0.33) microvolts, p < 0.001). Relative power was greater for quiescence during PGES than BS for the 1-4 Hz delta band (p < 0.001), at the expense of power in the theta (4-8 Hz, p < 0.001), beta (13-30 Hz, p = 0.04) and gamma (30-70 Hz, p = 0.006) frequency bands. Topographic analyses revealed that amplitude across the scalp was consistently higher for quiescent periods during PGES than BS, whose voltage was within the noise floor. CONCLUSIONS: Quiescent epochs during PGES and BS have distinct patterns of EEG signals across voltage, frequency, and spatial domains. SIGNIFICANCE: Quiescent epochs during PGES and BS, important neurophysiological markers for clinical outcomes, are shown to have distinct voltage and frequency characteristics.


Asunto(s)
Terapia Electroconvulsiva , Isoflurano , Adulto , Algoritmos , Electroencefalografía , Humanos , Convulsiones/diagnóstico
9.
World Neurosurg ; 155: e548-e563, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481106

RESUMEN

OBJECTIVE: There is a paucity of clinical evidence that guides perioperative glycemia management in patients undergoing craniotomy for brain tumor resection. The purpose of this study was to better understand global perceptions and practices related to glycemia management in these patients. METHODS: Neuroanesthesiologists throughout North America, South America, Europe, and Asia filled out a brief online questionnaire related to their perceptions and practices regarding glycemia management in patients undergoing craniotomy for brain tumor resection. RESULTS: Over 4 weeks, 435 participants practicing in 34 countries across 6 continents participated in this survey. Although responders in North America were found to perceive a higher risk hyperglycemia compared with those practicing in European (P = 0.024) and South Asian (P = 0.007) countries, responders practicing in South Asian countries (P = 0.030), Middle Eastern countries (P = 0.029), and South American (P = 0.005) countries were more likely than those from North America to remeasure glucose after an initial normal glucose measurement at incision. Responders from North America reported that a higher blood glucose threshold was necessary for them to delay or cancel the surgery compared with responders in Slavic (P < 0.001), European (P = 0.002), South American (P = 0.002), and Asian and Pacific (P < 0.001) countries. Responders from North America were more likely to report that they would delay or cancel the surgery because of a higher blood glucose threshold. CONCLUSIONS: Our survey results suggest that perceptions and practices related to blood glucose management in patients undergoing brain tumor resection are variable. This study highlights the need for stronger clinical evidence and guidelines to help guide decisions for when and how to manage blood glucose derangements in these patients.


Asunto(s)
Anestesiólogos/psicología , Neoplasias Encefálicas/cirugía , Craneotomía , Índice Glucémico , Atención Perioperativa/métodos , Encuestas y Cuestionarios , Actitud del Personal de Salud , Neoplasias Encefálicas/sangre , Manejo de la Enfermedad , Femenino , Salud Global , Índice Glucémico/fisiología , Humanos , Internacionalidad , Masculino
10.
BMJ Open ; 11(6): e051554, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130966

RESUMEN

INTRODUCTION: Chronic post-surgical pain (CPSP) after lung or pleural surgery is a common complication and associated with a decrease in quality of life, long-term use of pain medication and substantial economic costs. An abundant number of primary prognostic factor studies are published each year, but findings are often inconsistent, methods heterogeneous and the methodological quality questionable. Systematic reviews and meta-analyses are therefore needed to summarise the evidence. METHODS AND ANALYSIS: The reporting of this protocol adheres to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) checklist. We will include retrospective and prospective studies with a follow-up of at least 3 months reporting patient-related factors and surgery-related factors for any adult population. Randomised controlled trials will be included if they report on prognostic factors for CPSP after lung or pleural surgery. We will exclude case series, case reports, literature reviews, studies that do not report results for lung or pleural surgery separately and studies that modified the treatment or prognostic factor based on pain during the observation period. MEDLINE, Scopus, Web of Science, Embase, Cochrane, CINAHL, Google Scholar and relevant literature reviews will be searched. Independent pairs of two reviewers will assess studies in two stages based on the PICOTS criteria. We will use the Quality in Prognostic Studies tool for the quality assessment and the CHARMS-PF checklist for the data extraction of the included studies. The analyses will all be conducted separately for each identified prognostic factor. We will analyse adjusted and unadjusted estimated measures separately. When possible, evidence will be summarised with a meta-analysis and otherwise narratively. We will quantify heterogeneity by calculating the Q and I2 statistics. The heterogeneity will be further explored with meta-regression and subgroup analyses based on clinical knowledge. The quality of the evidence obtained will be evaluated according to the Grades of Recommendation Assessment, Development and Evaluation guideline 28. ETHICS AND DISSEMINATION: Ethical approval will not be necessary, as all data are already in the public domain. Results will be published in a peer-reviewed scientific journal. PROSPERO REGISTRATION NUMBER: CRD42021227888.


Asunto(s)
Dolor Postoperatorio , Calidad de Vida , Adulto , Humanos , Pulmón/cirugía , Metaanálisis como Asunto , Dolor Postoperatorio/etiología , Pronóstico , Estudios Prospectivos , Proyectos de Investigación , Estudios Retrospectivos , Revisiones Sistemáticas como Asunto
11.
Intensive Care Med Exp ; 9(1): 15, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33796954

RESUMEN

BACKGROUND: Real-time automated analysis of videos of the microvasculature is an essential step in the development of research protocols and clinical algorithms that incorporate point-of-care microvascular analysis. In response to the call for validation studies of available automated analysis software by the European Society of Intensive Care Medicine, and building on a previous validation study in sheep, we report the first human validation study of AVA 4. METHODS: Two retrospective perioperative datasets of human microcirculation videos (P1 and P2) and one prospective healthy volunteer dataset (V1) were used in this validation study. Video quality was assessed using the modified Microcirculation Image Quality Selection (MIQS) score. Videos were initially analyzed with (1) AVA software 3.2 by two experienced investigators using the gold standard semi-automated method, followed by an analysis with (2) AVA automated software 4.1. Microvascular variables measured were perfused vessel density (PVD), total vessel density (TVD), and proportion of perfused vessels (PPV). Bland-Altman analysis and intraclass correlation coefficients (ICC) were used to measure agreement between the two methods. Each method's ability to discriminate between microcirculatory states before and after induction of general anesthesia was assessed using paired t-tests. RESULTS: Fifty-two videos from P1, 128 videos from P2 and 26 videos from V1 met inclusion criteria for analysis. Correlational analysis and Bland-Altman analysis revealed poor agreement and no correlation between AVA 4.1 and AVA 3.2. Following the induction of general anesthesia, TVD and PVD measured using AVA 3.2 increased significantly for P1 (p < 0.05) and P2 (p < 0.05). However, these changes could not be replicated with the data generated by AVA 4.1. CONCLUSIONS: AVA 4.1 is not a suitable tool for research or clinical purposes at this time. Future validation studies of automated microvascular flow analysis software should aim to measure the new software's agreement with the gold standard, its ability to discriminate between clinical states and the quality thresholds at which its performance becomes unacceptable.

13.
Nat Sci Sleep ; 13: 303-313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692642

RESUMEN

INTRODUCTION: The relative power of slow-delta oscillations in the electroencephalogram (EEG), termed slow-wave activity (SWA), correlates with level of unconsciousness. Acoustic enhancement of SWA has been reported for sleep states, but it remains unknown if pharmacologically induced SWA can be enhanced using sound. Dexmedetomidine is a sedative whose EEG oscillations resemble those of natural sleep. This pilot study was designed to investigate whether SWA can be enhanced using closed-loop acoustic stimulation during sedation (CLASS) with dexmedetomidine. METHODS: Closed-Loop Acoustic Stimulation during Sedation with Dexmedetomidine (CLASS-D) is a within-subject, crossover, controlled, interventional trial with healthy volunteers. Each participant will be sedated with a dexmedetomidine target-controlled infusion (TCI). Participants will undergo three CLASS conditions in a multiple crossover design: in-phase (phase-locked to slow-wave upslopes), anti-phase (phase-locked to slow-wave downslopes) and sham (silence). High-density EEG recordings will assess the effects of CLASS across the scalp. A volitional behavioral task and sequential thermal arousals will assess the anesthetic effects of CLASS. Ambulatory sleep studies will be performed on nights immediately preceding and following the sedation session. EEG effects of CLASS will be assessed using linear mixed-effects models. The impacts of CLASS on behavior and arousal thresholds will be assessed using logistic regression modeling. Parametric modeling will determine differences in sleepiness and measures of sleep homeostasis before and after sedation. RESULTS: The primary outcome of this pilot study is the effect of CLASS on EEG slow waves. Secondary outcomes include the effects of CLASS on the following: performance of a volitional task, arousal thresholds, and subsequent sleep. DISCUSSION: This investigation will elucidate 1) the potential of exogenous sensory stimulation to potentiate SWA during sedation; 2) the physiologic significance of this intervention; and 3) the connection between EEG slow-waves observed during sleep and sedation.

14.
Clin Neurophysiol ; 132(4): 977-983, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33652270

RESUMEN

OBJECTIVE: Postictal generalized electroencephalographic suppression (PGES) has been defined as electroencephalographic (EEG) activity of less than 10 microvolts following a generalized seizure. PGES is associated with an increased risk of sudden unexplained death in epilepsy, as well as treatment efficacy of electroconvulsive therapy (ECT). We investigated the impact of anesthetic on PGES expression and temporal characteristics. METHODS: We recorded postictal EEG in 50 ECT sessions in 11 patients with treatment resistant depression (ClinicalTrials.gov NCT02761330). For each participant, repeated sessions included either ketamine or etomidate general anesthesia during ECT. An automated algorithm was employed to detect PGES within 5 minutes after seizure termination. RESULTS: PGES was detected in 31/50 recordings, with intermittent epochs recurring up to five minutes after seizure termination. PGES total duration was greater following ketamine than etomidate anesthesia (p = 0.04). PGES expression declined loglinearly as a function of time (r = -0.89, p < 10-4). EEG amplitude during PGES did not vary linearly with time. CONCLUSIONS: PGES can occur intermittently for several minutes following seizure termination. Anesthetic effects should be considered when correlating PGES duration to clinical outcomes. SIGNIFICANCE: Prolonged EEG monitoring several minutes following seizure termination may be necessary to fully evaluate the presence and total duration of PGES.


Asunto(s)
Anestesia/métodos , Trastorno Bipolar/terapia , Encéfalo/fisiopatología , Trastorno Depresivo Resistente al Tratamiento/terapia , Terapia Electroconvulsiva , Convulsiones/fisiopatología , Adulto , Trastorno Bipolar/fisiopatología , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Electroencefalografía , Humanos
16.
BMJ Open ; 10(12): e044295, 2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33318123

RESUMEN

INTRODUCTION: Delirium is a potentially preventable disorder characterised by acute disturbances in attention and cognition with fluctuating severity. Postoperative delirium is associated with prolonged intensive care unit and hospital stay, cognitive decline and mortality. The development of biomarkers for tracking delirium could potentially aid in the early detection, mitigation and assessment of response to interventions. Because sleep disruption has been posited as a contributor to the development of this syndrome, expression of abnormal electroencephalography (EEG) patterns during sleep and wakefulness may be informative. Here we hypothesise that abnormal EEG patterns of sleep and wakefulness may serve as predictive and diagnostic markers for postoperative delirium. Such abnormal EEG patterns would mechanistically link disrupted thalamocortical connectivity to this important clinical syndrome. METHODS AND ANALYSIS: P-DROWS-E (Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography) is a 220-patient prospective observational study. Patient eligibility criteria include those who are English-speaking, age 60 years or older and undergoing elective cardiac surgery requiring cardiopulmonary bypass. EEG acquisition will occur 1-2 nights preoperatively, intraoperatively, and up to 7 days postoperatively. Concurrent with EEG recordings, two times per day postoperative Confusion Assessment Method (CAM) evaluations will quantify the presence and severity of delirium. EEG slow wave activity, sleep spindle density and peak frequency of the posterior dominant rhythm will be quantified. Linear mixed-effects models will be used to evaluate the relationships between delirium severity/duration and EEG measures as a function of time. ETHICS AND DISSEMINATION: P-DROWS-E is approved by the ethics board at Washington University in St. Louis. Recruitment began in October 2018. Dissemination plans include presentations at scientific conferences, scientific publications and mass media. TRIAL REGISTRATION NUMBER: NCT03291626.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Delirio , Anciano , Delirio/diagnóstico , Electroencefalografía , Humanos , Persona de Mediana Edad , Estudios Observacionales como Asunto , Sueño , Vigilia , Washingtón
17.
Anesth Analg ; 130(6): 1568-1571, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384346
18.
Am J Phys Med Rehabil ; 98(10): 859-865, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31441834

RESUMEN

OBJECTIVE: Concussion with transient loss of consciousness is a commonly observed but poorly understood phenomenon with mounting clinical significance. This study aimed to examine the relationship between head motion in varying planes and transient loss of consciousness in athletes with brain injuries. STUDY DESIGN: A case-control design was used. The Ultimate Fighting Championship database was screened for events ending with knockouts from 2013 to 2016. Time of strike, striking implement, strike location, and head motion were recorded for all knockout strikes (cases) and for a subset of nonknockout strikes (controls). Characteristics of winners and losers were compared using two-tailed t tests. Multivariate logistic regression was used to determine odds ratios for strike characteristics associated with transient loss of consciousness. The Kaplan-Meier estimate was used to describe the temporal distribution of knockouts. RESULTS: One hundred thirty-six fights were identified and 110 videos were included. Head motion in the axial plane was strongly associated with transient loss of consciousness (odds ratio, 45.3; 95% confidence interval, 20.8-98.6). Other predictors of transient loss of consciousness were head motion in sagittal and coronal planes, nonfist striking implements, and strikes to the mandible or maxilla. The Kaplan-Meier survival curve demonstrated a decreasing rate of knockouts through time. CONCLUSIONS: Rotational head acceleration, particularly in the axial plane, is strongly associated with transient loss of consciousness.


Asunto(s)
Traumatismos Craneocerebrales/fisiopatología , Artes Marciales/lesiones , Inconsciencia/etiología , Adulto , Estudios de Casos y Controles , Traumatismos Craneocerebrales/etiología , Femenino , Cabeza/fisiopatología , Humanos , Estimación de Kaplan-Meier , Modelos Logísticos , Masculino , Movimiento (Física) , Oportunidad Relativa
19.
Can J Anaesth ; 66(1): 48-56, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30229542

RESUMEN

PURPOSE: Response to commands is the gold standard to assess the level of consciousness during anesthesia induction but it only provides an intermittent, binary measure with low temporal resolution. To overcome these limitations, we combined the object hold method with handgrip dynamometry to continuously record the force applied to hold a dynamometer as a surrogate measure of the level of consciousness during induction of anesthesia. METHODS: Fourteen patients scheduled for elective lumbar surgery and 14 age-matched non-anesthetized controls were enrolled. The subjects held the dynamometer with their dominant hand for as long as possible (patients) or until told to stop (controls). After a one-minute baseline, propofol was infused (1.0 mg·kg-1·min-1) to the patient group until the subject dropped the dynamometer, which defined the object hold time. Three additional patients were also asked intermittently to squeeze the dynamometer during the propofol infusion to determine any retained ability to exert a strong grip despite any grip changes during induction. RESULTS: The mean (standard deviation) object hold time was 115 (22) seconds after the start of the propofol infusion. There was a progressive significant linear decrease (R2 = 0.98; P < 0.001) in dynamometry-determined handgrip force starting approximately 74 seconds before object drop. Age was inversely related to the object hold time (R2 = 0.47, P < 0.01). The three additional propofol induction patients had strong intermittent grip strength despite progressive decreases in the hold force. Of the 17 patients who completed the object hold task (14 with the standard protocol and three with intermittent squeeze requests), 16 (94%; 95% confidence interval, 76 to 99%) did not respond to verbal commands after dropping the dynamometer. CONCLUSION: Handgrip dynamometry can be used to continuously track volitional control during induction of anesthesia while also reliably showing a gradual loss of consciousness. This method could be useful for studies investigating mechanisms of anesthesia.


Asunto(s)
Anestésicos Intravenosos/administración & dosificación , Estado de Conciencia/efectos de los fármacos , Fuerza de la Mano/fisiología , Monitoreo Intraoperatorio/instrumentación , Dinamómetro de Fuerza Muscular , Propofol/administración & dosificación , Adulto , Femenino , Humanos , Masculino , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA