Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251545

RESUMEN

PURPOSE: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose. Drug candidate CBL0137 is efficacious against glioblastoma by inhibiting histone chaperone FACT, known to be involved in DNA damage repair. We investigated the combination of CBL0137 and radiation on glioblastoma. METHODS: In vitro, we combined CBL0137 with radiation on U87MG and A1207 glioblastoma cells using the clonogenic assay to evaluate the response to several treatment regimens, and the Fast Halo Assay to examine DNA repair. In vivo, we used the optimum combination treatment regimen to evaluate the response of orthotopic tumors in nude mice. RESULTS: In vitro, the combination of CBL0137 and radiation is superior to either alone and administering CBL0137 two hours prior to radiation, having the drug present during and for a prolonged period post-radiation, is an optimal schedule. CBL0137 inhibits DNA damage repair following radiation and affects the subcellular distribution of histone chaperone ATRX, a molecule involved in DNA repair. In vivo, one dose of CBL0137 is efficacious and the combination of CBL0137 with radiation increases median survival over either monotherapy. CONCLUSIONS: CBL0137 is most effective with radiation for glioblastoma when present at the time of radiation, immediately after and for a prolonged period post-radiation, by inhibiting DNA repair caused by radiation. The combination leads to increased survival making it attractive as a dual therapy.

2.
Res Sq ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39315270

RESUMEN

Purpose: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose. Drug candidate CBL0137 is efficacious against glioblastoma by inhibiting histone chaperone FACT, known to be involved in DNA damage repair. We investigated the combination of CBL0137 and radiation on glioblastoma. Methods: In vitro, we combined CBL0137 with radiation on U87MG and A1207 glioblastoma cells using the clonogenic assay to evaluate the response to several treatment regimens, and the Fast Halo Assay to examine DNA repair. In vivo, we used the optimum combination treatment regimen to evaluate the response of orthotopic tumors in nude mice. Results: In vitro, the combination of CBL0137 and radiation is superior to either alone and administering CBL0137 two hours prior to radiation, having the drug present during and for a prolonged period post-radiation, is an optimal schedule. CBL0137 inhibits DNA damage repair following radiation and affects the subcellular distribution of histone chaperone ATRX, a molecule involved in DNA repair. In vivo, one dose of CBL0137 is efficacious and the combination of CBL0137 with radiation increases median survival over either monotherapy. Conclusions: CBL0137 is most effective with radiation for glioblastoma when present at the time of radiation, immediately after and for a prolonged period post-radiation, by inhibiting DNA repair caused by radiation. The combination leads to increased survival making it attractive as a dual therapy.

3.
Cancer Res Commun ; 3(11): 2256-2267, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37870410

RESUMEN

Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant family of autonomous retrotransposons occupying over 17% of human DNA, is epigenetically silenced in normal tissues by the mechanisms involving p53 but is frequently derepressed in cancer, suggesting that L1-encoded proteins may act as tumor-associated antigens recognized by the immune system. In this study, we established an immunoassay to detect circulating autoantibodies against L1 proteins in human blood. Using this assay in >2,800 individuals with or without cancer, we observed significantly higher IgG titers against L1-encoded ORF1p and ORF2p in patients with lung, pancreatic, ovarian, esophageal, and liver cancers than in healthy individuals. Remarkably, elevated levels of anti-ORF1p-reactive IgG were observed in patients with cancer with disease stages 1 and 2, indicating that the immune response to L1 antigens can occur in the early phases of carcinogenesis. We concluded that the antibody response against L1 antigens could contribute to the diagnosis and determination of immunoreactivity of tumors among cancer types that frequently escape early detection. SIGNIFICANCE: The discovery of autoantibodies against antigens encoded by L1 retrotransposons in patients with five poorly curable cancer types has potential implications for the detection of an ongoing carcinogenic process and tumor immunoreactivity.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias/genética , Autoanticuerpos/genética , Inmunoglobulina G/genética
4.
Proc Natl Acad Sci U S A ; 119(49): e2213146119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36449545

RESUMEN

Activation of endogenous retrotransposons frequently occurs in cancer cells and contributes to tumor genomic instability. To test whether inhibition of retrotranspositions has an anticancer effect, we used treatment with the nucleoside reverse transcriptase inhibitor (NRTI) stavudine (STV) in mouse cancer models, MMTV-HER2/Neu and Th-MYCN, that spontaneously develop breast cancer and neuroblastoma, respectively. In both cases, STV in drinking water did not affect tumor incidence nor demonstrate direct antitumor effects. However, STV dramatically extended progression-free survival in both models following an initial complete response to chemotherapy. To approach the mechanism underlying this phenomenon, we analyzed the effect of NRTI on the selection of treatment-resistant variants in tumor cells in culture. Cultivation of mouse breast carcinoma 4T1 in the presence of STV dramatically reduced the frequency of cells capable of surviving treatment with anticancer drugs. Global transcriptome analysis demonstrated that the acquisition of drug resistance by 4T1 cells was accompanied by an increase in the constitutive activity of interferon type I and NF-κB pathways and an elevated expression of LINE-1 elements, which are known to induce inflammatory responses via their products of reverse transcription. Treatment with NRTI reduced NF-κB activity and reverted drug resistance. Furthermore, the inducible expression of LINE-1 stimulated inflammatory response and increased the frequency of drug-resistant variants in a tumor cell population. These results indicate a mechanism by which retrotransposon desilencing can stimulate tumor cell survival during treatment and suggest reverse transcriptase inhibition as a potential therapeutic approach for targeting the development of drug-resistant cancers.


Asunto(s)
Retroelementos , Inhibidores de la Transcriptasa Inversa , Animales , Ratones , Inhibidores de la Transcriptasa Inversa/farmacología , Retroelementos/genética , FN-kappa B , Resistencia a Antineoplásicos/genética , Elementos de Nucleótido Esparcido Largo
5.
Nat Commun ; 13(1): 6529, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319638

RESUMEN

Age is the leading risk factor for prevalent diseases and death. However, the relation between age-related physiological changes and lifespan is poorly understood. We combined analytical and machine learning tools to describe the aging process in large sets of longitudinal measurements. Assuming that aging results from a dynamic instability of the organism state, we designed a deep artificial neural network, including auto-encoder and auto-regression (AR) components. The AR model tied the dynamics of physiological state with the stochastic evolution of a single variable, the "dynamic frailty indicator" (dFI). In a subset of blood tests from the Mouse Phenome Database, dFI increased exponentially and predicted the remaining lifespan. The observation of the limiting dFI was consistent with the late-life mortality deceleration. dFI changed along with hallmarks of aging, including frailty index, molecular markers of inflammation, senescent cell accumulation, and responded to life-shortening (high-fat diet) and life-extending (rapamycin) treatments.


Asunto(s)
Fragilidad , Ratones , Animales , Aprendizaje Automático no Supervisado , Envejecimiento/fisiología , Longevidad , Redes Neurales de la Computación
6.
Front Oncol ; 12: 863329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677155

RESUMEN

Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia.

7.
J Ethnopharmacol ; 283: 114666, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592338

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY: Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS: Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS: We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION: AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Tabernaemontana/química , Proteínas Quinasas Activadas por AMP/metabolismo , Alcaloides/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Nucleic Acids Res ; 49(19): 11350-11366, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34554261

RESUMEN

Long interspersed nuclear element-1 (L1) is an autonomous non-LTR retrotransposon comprising ∼20% of the human genome. L1 self-propagation causes genomic instability and is strongly associated with aging, cancer and other diseases. The endonuclease domain of L1's ORFp2 protein (L1-EN) initiates de novo L1 integration by nicking the consensus sequence 5'-TTTTT/AA-3'. In contrast, related nucleases including structurally conserved apurinic/apyrimidinic endonuclease 1 (APE1) are non-sequence specific. To investigate mechanisms underlying sequence recognition and catalysis by L1-EN, we solved crystal structures of L1-EN complexed with DNA substrates. This showed that conformational properties of the preferred sequence drive L1-EN's sequence-specificity and catalysis. Unlike APE1, L1-EN does not bend the DNA helix, but rather causes 'compression' near the cleavage site. This provides multiple advantages for L1-EN's role in retrotransposition including facilitating use of the nicked poly-T DNA strand as a primer for reverse transcription. We also observed two alternative conformations of the scissile bond phosphate, which allowed us to model distinct conformations for a nucleophilic attack and a transition state that are likely applicable to the entire family of nucleases. This work adds to our mechanistic understanding of L1-EN and related nucleases and should facilitate development of L1-EN inhibitors as potential anticancer and antiaging therapeutics.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN/química , Desoxirribonucleasa I/química , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , División del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Genoma Humano , Inestabilidad Genómica , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Termodinámica
9.
Cell Death Discov ; 7(1): 266, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584068

RESUMEN

Acute radiation syndrome (ARS) is a major cause of lethality following radiation disasters. A TLR5 agonist, entolimod, is among the most powerful experimental radiation countermeasures and shows efficacy in rodents and non-human primates as a prophylactic (radioprotection) and treatment (radiomitigation) modality. While the prophylactic activity of entolimod has been connected to the suppression of radiation-induced apoptosis, the mechanism by which entolimod functions as a radiomitigator remains poorly understood. Uncovering this mechanism has significant and broad-reaching implications for the clinical development and improvement of TLR5 agonists for use as an effective radiation countermeasure in scenarios of mass casualty resulting from accidental exposure to ionizing radiation. Here, we demonstrate that in contrast to radioprotection, neutrophils are essential for the radiomitigative activity of entolimod in a mouse model of lethal ARS. Neutrophils express functional TLR5 and rapidly exit the bone marrow (BM), accumulate in solid tissues, and release MMP-9 following TLR5 stimulation which is accompanied by an increase in the number of active hematopoietic pluripotent precursors (HPPs) in the BM. Importantly, recombinant MMP-9 by itself has radiomitigative activity and, in the absence of neutrophils, accelerates the recovery of the hematopoietic system. Unveiling this novel TLR5-neutrophil-MMP-9 axis of radiomitigation opens new opportunities for the development of efficacious radiation countermeasures to treat ARS following accidental radiation disasters.

10.
Aging (Albany NY) ; 13(18): 21814-21837, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34587118

RESUMEN

Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.


Asunto(s)
Envejecimiento/fisiología , Modelos Animales de Enfermedad , Perros , Envejecimiento/genética , Envejecimiento/inmunología , Envejecimiento/psicología , Animales , Inteligencia Artificial , Cognición , Perros/genética , Perros/crecimiento & desarrollo , Perros/inmunología , Perros/fisiología , Genoma , Humanos , Sistema Inmunológico/inmunología , Longevidad
11.
Free Radic Biol Med ; 172: 136-151, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34097996

RESUMEN

Prostate cancer (PCa) is a major cause of mortality and morbidity in men. Available therapies yield limited outcome. We explored anti-PCa activity in a polyphenol-rich fraction of Bergenia ligulata (PFBL), a plant used in Indian traditional and folk medicine for its anti-inflammatory and antineoplastic properties. PFBL constituted of about fifteen different compounds as per LCMS analysis induced apoptotic death in both androgen-dependent LNCaP and androgen-refractory PC3 and DU145 cells with little effect on NKE and WI38 cells. Further investigation revealed that PFBL mediates its function through upregulating ROS production by enhanced catalytic activity of Monoamine oxidase A (MAO-A). Notably, the differential inactivation of NRF2-antioxidant response pathway by PFBL resulted in death in PC3 versus NKE cells involving GSK-3ß activity facilitated by AKT inhibition. PFBL efficiently reduced the PC3-tumor xenograft in NOD-SCID mice alone and in synergy with Paclitaxel. Tumor tissues in PFBL-treated mice showed upregulation of similar mechanism of cell death as observed in isolated PC3 cells i.e., elevation of MAO-A catalytic activity, ROS production accompanied by activation of ß-TrCP-GSK-3ß axis of NRF2 degradation. Blood counts, liver, and splenocyte sensitivity analyses justified the PFBL safety in the healthy mice. To our knowledge this is the first report of an activity that crippled NRF2 activation both in vitro and in vivo in response to MAO-A activation. Results of this study suggest the development of a novel treatment protocol utilizing PFBL to improve therapeutic outcome for patients with aggressive PCa which claims hundreds of thousands of lives each year.


Asunto(s)
Antioxidantes , Neoplasias de la Próstata , Animales , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Monoaminooxidasa , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Polifenoles/farmacología , Neoplasias de la Próstata/tratamiento farmacológico
12.
Methods Mol Biol ; 2318: 337-346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019301

RESUMEN

Oncoproteins encoded by dominant oncogenes have long been considered as targets for chemotherapeutic intervention. However, oncogenic transcription factors have often been dismissed as "undruggable." Members of the Myc family of transcription factors have been identified as promising targets for cancer chemotherapy in multiple publications reporting the requirement of Myc proteins for maintenance of almost every type of tumor. Here, we describe cell-based approaches to identify c-Myc small molecule inhibitors by screening complex libraries of diverse small molecules based on Myc functionality and specificity.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Genes myc/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Línea Celular Tumoral , Genes myc/genética , Genes myc/fisiología , Humanos , Proteínas Oncogénicas/efectos de los fármacos , Proteínas Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo
13.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33994371

RESUMEN

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Asunto(s)
Carbazoles/administración & dosificación , Carbazoles/farmacología , Cromatina/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/farmacología , Neuroblastoma/tratamiento farmacológico , Panobinostat/administración & dosificación , Panobinostat/farmacología , Animales , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Ratones , Células Tumorales Cultivadas
14.
Cell Death Dis ; 12(6): 545, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039962

RESUMEN

Transplantation of bone marrow (BM) is made possible by the differential sensitivity of its stromal and hematopoietic components to preconditioning by radiation and/or chemotherapeutic drugs. These genotoxic treatments eliminate host hematopoietic precursors by inducing p53-mediated apoptosis but keep the stromal niche sufficiently intact for the engraftment of donor hematopoietic cells. We found that p53-null mice cannot be rescued by BM transplantation (BMT) from even the lowest lethal dose of total body irradiation (TBI). We compared structural changes in BM stroma of mice differing in their p53 status to understand why donor BM failed to engraft in the irradiated p53-null mice. Irradiation did not affect the general structural integrity of BM stroma and induced massive expression of alpha-smooth muscle actin in mesenchymal cells followed by increased adiposity in p53 wild-type mice. In contrast, none of these events were found in p53-null mice, whose BM stroma underwent global structural damage following TBI. Similar differences in response to radiation were observed in in vitro-grown bone-adherent mesenchymal cells (BAMC): p53-null cells underwent mitotic catastrophe while p53 wild-type cells stayed arrested but viable. Supplementation with intact BAMC of either genotype enabled donor BM engraftment and significantly extended longevity of irradiated p53-null mice. Thus, successful preconditioning depends on the p53-mediated protection of cells critical for the functionality of BM stroma. Overall, this study reveals a dual positive role of p53 in BMT: it drives apoptotic death of hematopoietic cells and protects BM stromal cells essential for its functionality.


Asunto(s)
Médula Ósea/fisiopatología , Células Madre Hematopoyéticas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proliferación Celular , Ratones
15.
Nat Commun ; 12(1): 2765, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035236

RESUMEN

We investigated the dynamic properties of the organism state fluctuations along individual aging trajectories in a large longitudinal database of CBC measurements from a consumer diagnostics laboratory. To simplify the analysis, we used a log-linear mortality estimate from the CBC variables as a single quantitative measure of the aging process, henceforth referred to as dynamic organism state indicator (DOSI). We observed, that the age-dependent population DOSI distribution broadening could be explained by a progressive loss of physiological resilience measured by the DOSI auto-correlation time. Extrapolation of this trend suggested that DOSI recovery time and variance would simultaneously diverge at a critical point of 120 - 150 years of age corresponding to a complete loss of resilience. The observation was immediately confirmed by the independent analysis of correlation properties of intraday physical activity levels fluctuations collected by wearable devices. We conclude that the criticality resulting in the end of life is an intrinsic biological property of an organism that is independent of stress factors and signifies a fundamental or absolute limit of human lifespan.


Asunto(s)
Adaptación Fisiológica/fisiología , Envejecimiento/fisiología , Biomarcadores/sangre , Longevidad/fisiología , Resiliencia Psicológica , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/psicología , Recuento de Células Sanguíneas/métodos , Femenino , Estado de Salud , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Commun Biol ; 4(1): 466, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846531

RESUMEN

The Toll-like receptor 5 (TLR5) agonist entolimod, a derivative of Salmonella flagellin, has therapeutic potential for several indications including radioprotection and cancer immunotherapy. However, in Phase 1 human studies, entolimod induced a rapid neutralizing immune response, presumably due to immune memory from prior exposure to flagellated enterobacteria. To enable multi-dose applications, we used structure-guided reengineering to develop a next-generation, substantially deimmunized entolimod variant, GP532. GP532 induces TLR5-dependent NF-κB activation like entolimod but is smaller and has mutations eliminating an inflammasome-activating domain and key B- and T-cell epitopes. GP532 is resistant to human entolimod-neutralizing antibodies and shows reduced de novo immunogenicity. GP532 also has improved bioavailability, a stronger effect on key cytokine biomarkers, and a longer-lasting effect on NF-κB. Like entolimod, GP532 demonstrated potent prophylactic and therapeutic efficacy in mouse models of radiation-induced death and tissue damage. These results establish GP532 as an optimized TLR5 agonist suitable for multi-dose therapies and for patients with high titers of preexisting flagellin-neutralizing antibodies.


Asunto(s)
Péptidos/farmacología , Transducción de Señal , Receptor Toll-Like 5/agonistas , Línea Celular Tumoral , Células HEK293 , Humanos
17.
Cell Rep ; 35(2): 108994, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852836

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is an aggressive and incurable childhood brain tumor for which new treatments are needed. CBL0137 is an anti-cancer compound developed from quinacrine that targets facilitates chromatin transcription (FACT), a chromatin remodeling complex involved in transcription, replication, and DNA repair. We show that CBL0137 displays profound cytotoxic activity against a panel of patient-derived DIPG cultures by restoring tumor suppressor TP53 and Rb activity. Moreover, in an orthotopic model of DIPG, treatment with CBL0137 significantly extends animal survival. The FACT subunit SPT16 is found to directly interact with H3.3K27M, and treatment with CBL0137 restores both histone H3 acetylation and trimethylation. Combined treatment of CBL0137 with the histone deacetylase inhibitor panobinostat leads to inhibition of the Rb/E2F1 pathway and induction of apoptosis. The combination of CBL0137 and panobinostat significantly prolongs the survival of mice bearing DIPG orthografts, suggesting a potential treatment strategy for DIPG.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Proteínas de Unión al ADN/genética , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Epigénesis Genética , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Neuroglía/efectos de los fármacos , Factores de Elongación Transcripcional/genética , Acetilación , Animales , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/mortalidad , Neoplasias del Tronco Encefálico/patología , Carbazoles/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Niño , Cromatina/química , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/mortalidad , Glioma Pontino Intrínseco Difuso/patología , Sinergismo Farmacológico , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Epigenoma , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Metilación , Ratones , Neuroglía/metabolismo , Neuroglía/patología , Panobinostat/farmacología , Cultivo Primario de Células , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Análisis de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancer Immunol Immunother ; 70(7): 2073-2086, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33439292

RESUMEN

Curaxins are small molecules that bind genomic DNA and interfere with DNA-histone interactions leading to the loss of histones and decondensation of chromatin. We named this phenomenon 'chromatin damage'. Curaxins demonstrated anti-cancer activity in multiple pre-clinical tumor models. Here, we present data which reveals, for the first time, a role for the immune system in the anti-cancer effects of curaxins. Using the lead curaxin, CBL0137, we observed elevated expression of several group of genes in CBL0137-treated tumor cells including interferon sensitive genes, MHC molecules, some embryo-specific antigens suggesting that CBL0137 increases tumor cell immunogenicity and improves recognition of tumor cells by the immune system. In support of this, we found that the anti-tumor activity of CBL0137 was reduced in immune deficient SCID mice when compared to immune competent mice. Anti-tumor activity of CBL0137 was abrogated in CD8+ T cell depleted mice but only partially lost when natural killer or CD4+ T cells were depleted. Further support for a key role for the immune system in the anti-tumor activity of CBL0137 is evidenced by an increased antigen-specific effector CD8+ T cell and NK cell response, and an increased ratio of effector T cells to Tregs in the tumor and spleen. CBL0137 also elevated the number of CXCR3-expressing CTLs in the tumor and the level of interferon-γ-inducible protein 10 (IP-10) in serum, suggesting IP-10/CXCR3 controls CBL0137-elicited recruitment of effector CTLs to tumors. Our collective data underscores a previously unrecognized role for both innate and adaptive immunity in the anti-tumor activity of curaxins.


Asunto(s)
Carbazoles/farmacología , Cromatina/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Inmunidad/inmunología , Animales , Apoptosis , Proliferación Celular , Quimiocinas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Citocinas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Aging Cell ; 19(10): e13219, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32856419

RESUMEN

Adipose tissue is recognized as a major source of systemic inflammation with age, driving age-related tissue dysfunction and pathogenesis. Macrophages (Mφ) are central to these changes yet adipose tissue Mφ (ATMs) from aged mice remain poorly characterized. To identify biomarkers underlying changes in aged adipose tissue, we performed an unbiased RNA-seq analysis of ATMs from young (8-week-old) and healthy aged (80-week-old) mice. One of the genes identified, V-set immunoglobulin-domain-containing 4 (VSIG4/CRIg), encodes a Mφ-associated complement receptor and B7 family-related immune checkpoint protein. Here, we demonstrate that Vsig4 expression is highly upregulated with age in perigonadal white adipose tissue (gWAT) in two mouse strains (inbred C57BL/6J and outbred NIH Swiss) independent of gender. The accumulation of VSIG4 was mainly attributed to a fourfold increase in the proportion of VSIG4+ ATMs (13%-52%). In a longitudinal study, VSIG4 expression in gWAT showed a strong correlation with age within a cohort of male and female mice and correlated strongly with physiological frailty index (PFI, a multi-parameter assessment of health) in male mice. Our results indicate that VSIG4 is a novel biomarker of aged murine ATMs. VSIG4 expression was also found to be elevated in other aging tissues (e.g., thymus) and was strongly induced in tumor-adjacent stroma in cases of spontaneous and xenograft lung cancer models. VSIG4 expression was recently associated with cancer and several inflammatory diseases with diagnostic and prognostic potential in both mice and humans. Further investigation is required to determine whether VSIG4-positive Mφ contribute to immunosenescence and/or systemic age-related deficits.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Receptores de Complemento/metabolismo , Envejecimiento/metabolismo , Animales , Biomarcadores/metabolismo , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Oncotarget ; 11(14): 1273-1288, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32292576

RESUMEN

Toll-like receptor 5 (TLR5) controls endogenous immune responses to pathogens and is a promising target for pharmacological stimulation of anti-tumor immunity. Mobilan is an innovative gene therapy agent consisting of a non-replicating bicistronic adenovirus directing constitutive expression of human Toll-like receptor 5 (TLR5) and the secreted flagellin-based TLR5 agonist, 502s. In mice, Mobilan injection into prostate tumors resulted in autocrine TLR5 signaling, immune system activation, and suppression of tumor growth and metastasis. Here we report a first-in-human placebo-controlled clinical study of Mobilan aimed at evaluating safety, tolerability, pharmacokinetics and pharmacodynamics of a single intra-prostate injection of Mobilan in early stage prostate cancer patients. Mobilan was safe and well-tolerated at all tested doses; thus, the maximum tolerated dose was not identified. Injection of Mobilan induced signs of self-resolving inflammation not present in placebo-injected patients, including transient elevation of PSA and cytokine (G-CSF, IL-6) levels, and increased lymphoid infiltration in prostate tissue. The highest dose of Mobilan (1011 viral particles) produced the best combination of safety and pharmacodynamic effects. Therefore, Mobilan is well-tolerated and induces the expected pharmacodynamic response in humans. These results support further clinical development of Mobilan as a novel immunotherapy for prostate cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA