Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Regul Toxicol Pharmacol ; 150: 105632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679316

RESUMEN

The replacement of a proportion of concurrent controls by virtual controls in nonclinical safety studies has gained traction over the last few years. This is supported by foundational work, encouraged by regulators, and aligned with societal expectations regarding the use of animals in research. This paper provides an overview of the points to consider for any institution on the verge of implementing this concept, with emphasis given on database creation, risks, and discipline-specific perspectives.


Asunto(s)
Pruebas de Toxicidad , Toxicología , Animales , Toxicología/métodos , Pruebas de Toxicidad/métodos , Humanos , Bases de Datos Factuales , Medición de Riesgo
2.
J Immunother ; 47(5): 160-171, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38562119

RESUMEN

SUMMARY: T-cell-directed cancer therapies such as T-cell-engaging bispecifics (TCBs) are commonly associated with cytokine release syndrome and associated clinical signs that can limit their tolerability and therapeutic benefit. Strategies for reducing cytokine release are therefore needed. Here, we report on studies performed in cynomolgus monkeys to test different approaches for mitigating cytokine release with TCBs. A "priming dose" as well as subcutaneous dosing reduced cytokine release compared with intravenous dosing but did not affect the intended T-cell response to the bispecific. As another strategy, cytokines or cytokine responses were blocked with an anti-IL-6 antibody, dexamethasone, or a JAK1/TYK2-selective inhibitor, and the effects on toxicity as well as T-cell responses to a TCB were evaluated. The JAK1/TYK2 inhibitor and dexamethasone prevented CRS-associated clinical signs on the day of TCB administration, but the anti-IL-6 had little effect. All interventions allowed for functional T-cell responses and expected damage to target-bearing tissues, but the JAK1/TYK2 inhibitor prevented the upregulation of activation markers on T cells, suggesting the potential for suppression of T-cell responses. Our results suggest that short-term prophylactic dexamethasone treatment may be an effective option for blocking cytokine responses without affecting desired T-cell responses to TCBs.


Asunto(s)
Anticuerpos Biespecíficos , Citocinas , Macaca fascicularis , Linfocitos T , Animales , Anticuerpos Biespecíficos/farmacología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Citocinas/metabolismo , Dexametasona/farmacología , Humanos , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/etiología , Interleucina-6/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico
3.
Toxicol Sci ; 191(2): 400-413, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36515490

RESUMEN

Administration of a novel and selective small molecule integrin αvß6 inhibitor, MORF-627, to young cynomolgus monkeys for 28 days resulted in the rapid induction of epithelial proliferative changes in the urinary bladder of 2 animals, in the absence of test agent genotoxicity. Microscopic findings included suburothelial infiltration by irregular nests and/or trabeculae of epithelial cells, variable cytologic atypia, and high mitotic rate, without invasion into the tunica muscularis. Morphologic features and patterns of tumor growth were consistent with a diagnosis of early-stage invasive urothelial carcinoma. Ki67 immunohistochemistry demonstrated diffusely increased epithelial proliferation in the urinary bladder of several monkeys, including those with tumors, and αvß6 was expressed in some epithelial tissues, including urinary bladder, in monkeys and humans. Spontaneous urothelial carcinomas are extremely unusual in young healthy monkeys, suggesting a direct link of the finding to the test agent. Inhibition of integrin αvß6 is intended to locally and selectively block transforming growth factor beta (TGF-ß) signaling, which is implicated in epithelial proliferative disorders. Subsequent in vitro studies using a panel of integrin αvß6 inhibitors in human bladder epithelial cells replicated the increased urothelial proliferation observed in monkeys and was reversed through exogenous application of TGF-ß. Moreover, analysis of in vivo models of liver and lung fibrosis revealed evidence of epithelial hyperplasia and cell cycle dysregulation in mice treated with integrin αvß6 or TGF-ß receptor I inhibitors. The cumulative evidence suggests a direct link between integrin αvß6 inhibition and decreased TGF-ß signaling in the local bladder environment, with implications for epithelial proliferation and carcinogenesis.


Asunto(s)
Carcinoma de Células Transicionales , Integrinas , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Carcinoma de Células Transicionales/inducido químicamente , Integrinas/antagonistas & inhibidores , Integrinas/metabolismo , Macaca fascicularis , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Vejiga Urinaria/inducido químicamente
4.
Toxicol Pathol ; 51(6): 390-396, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-38293937

RESUMEN

In the last decade, numerous initiatives have emerged worldwide to reduce the use of animals in drug development, including more recently the introduction of Virtual Control Groups (VCGs) concept for nonclinical toxicity studies. Although replacement of concurrent controls (CCs) by virtual controls (VCs) represents an exciting opportunity, there are associated challenges that will be discussed in this paper with a more specific focus on anatomic pathology. Coordinated efforts will be needed from toxicologists, clinical and anatomic pathologists, and regulators to support approaches that will facilitate a staggered implementation of VCGs in nonclinical toxicity studies. Notably, the authors believe that a validated database for VC animals will need to include histopathology (digital) slides for microscopic assessment. Ultimately, the most important step lies in the validation of the concept by performing VCG and the full control group in parallel for studies of varying duration over a reasonable timespan to confirm there are no differences in outcomes (dual study design). The authors also discuss a hybrid approach, whereby control groups comprised both concurrent and VCs to demonstrate proof-of-concept. Once confidence is established by sponsors and regulators, VCs have the potential to replace some or all CC animals.


Asunto(s)
Desarrollo de Medicamentos , Patología , Animales , Grupos Control , Proyectos de Investigación
5.
Toxicol Pathol ; 50(8): 950-956, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36226581

RESUMEN

Nonclinical toxicology studies that are required to support human clinical trials of new drug candidates are generally conducted in a rodent and a non-rodent species. These studies typically contain a vehicle control group and low, intermediate, and high dose test article groups. In addition, a dosing-free recovery phase is sometimes included to determine reversibility of potential toxicities observed during the dosing phase and may include additional animals in the vehicle control and one or more dose groups. Typically, reversibility is determined by comparing the test article-related changes in the dosing phase animals to concurrent recovery phase animals at the same dose level. Therefore, for interpretation of reversibility, it is not always essential to euthanize the recovery vehicle control animals. In the absence of recovery vehicle control tissues, the pathologist's experience, historical control database, digital or glass slide repositories, or literature can be used to interpret the findings in the context of background pathology of the species/strain/age. Therefore, in most studies, the default approach could be not to euthanize recovery vehicle control animals. This article provides opinions on scenarios that may or may not necessitate euthanasia of recovery phase vehicle control animals in nonclinical toxicology studies involving dogs and nonhuman primates.


Asunto(s)
Animales de Laboratorio , Humanos , Animales , Perros
6.
Mol Cancer Ther ; 21(9): 1462-1472, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35793468

RESUMEN

Extra domain B splice variant of fibronectin (EDB+FN) is an extracellular matrix protein (ECM) deposited by tumor-associated fibroblasts, and is associated with tumor growth, angiogenesis, and invasion. We hypothesized that EDB+FN is a safe and abundant target for therapeutic intervention with an antibody-drug conjugate (ADC). We describe the generation, pharmacology, mechanism of action, and safety profile of an ADC specific for EDB+FN (EDB-ADC). EDB+FN is broadly expressed in the stroma of pancreatic, non-small cell lung (NSCLC), breast, ovarian, head and neck cancers, whereas restricted in normal tissues. In patient-derived xenograft (PDX), cell-line xenograft (CLX), and mouse syngeneic tumor models, EDB-ADC, conjugated to auristatin Aur0101 through site-specific technology, demonstrated potent antitumor growth inhibition. Increased phospho-histone H3, a pharmacodynamic biomarker of response, was observed in tumor cells distal to the target site of tumor ECM after EDB-ADC treatment. EDB-ADC potentiated infiltration of immune cells, including CD3+ T lymphocytes into the tumor, providing rationale for the combination of EDB-ADC with immune checkpoint therapy. EDB-ADC and anti-PD-L1 combination in a syngeneic breast tumor model led to enhanced antitumor activity with sustained tumor regressions. In nonclinical safety studies in nonhuman primates, EDB-ADC had a well-tolerated safety profile without signs of either on-target toxicity or the off-target effects typically observed with ADCs that are conjugated through conventional conjugation methods. These data highlight the potential for EDB-ADC to specifically target the tumor microenvironment, provide robust therapeutic benefits against multiple tumor types, and enhance activity antitumor in combination with checkpoint blockade.


Asunto(s)
Neoplasias de la Mama , Inmunoconjugados , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Fibronectinas/metabolismo , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Ratones , Neovascularización Patológica/metabolismo , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Toxicol Pathol ; 50(1): 13-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34414838

RESUMEN

Sinusoidal obstruction syndrome (SOS) is a unique form of liver injury that occurs after exposure to chemotherapeutic drugs and toxins. The diagnosis of SOS in humans remains a challenge as the clinical criteria have low specificity and there are no reliable noninvasive biomarkers. The mechanism of injury is believed to be damage to liver endothelial cells, primarily sinusoidal endothelial cells (SECs), which leads to sinusoidal dilation, central venous fibrosis, and/or nodular regeneration. Nonclinical data suggest that this uncommon liver toxicity can be recapitulated in cynomolgus monkeys, and it is critical that pathologists are familiar with its characteristic clinicopathologic features. Elevations in liver enzymes, in particular aspartate aminotransferase, associated with isolated thrombocytopenia, should raise the suspicion of SEC injury for specific drug classes. Characterization of liver microscopic findings in monkeys benefits from the use of appropriate stains, such as reticulin stain, and VEGFR2 and CD34 immunohistochemical (IHC) stains. CD41 IHC demonstrates platelet accumulation in injured sinusoids, the likely cause of thrombocytopenia commonly reported in SOS. In conclusion, this report provides a comprehensive characterization of the pathology findings of drug-induced SOS in monkeys with the objectives of ensuring appropriate nonclinical recognition of the liability and informing clinical development strategy and monitoring.


Asunto(s)
Enfermedad Veno-Oclusiva Hepática , Patología Clínica , Animales , Células Endoteliales/patología , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Enfermedad Veno-Oclusiva Hepática/patología , Macaca fascicularis
8.
J Pathol Inform ; 12: 42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34881097

RESUMEN

Whole slide imaging enables the use of a wide array of digital image analysis tools that are revolutionizing pathology. Recent advances in digital pathology and deep convolutional neural networks have created an enormous opportunity to improve workflow efficiency, provide more quantitative, objective, and consistent assessments of pathology datasets, and develop decision support systems. Such innovations are already making their way into clinical practice. However, the progress of machine learning - in particular, deep learning (DL) - has been rather slower in nonclinical toxicology studies. Histopathology data from toxicology studies are critical during the drug development process that is required by regulatory bodies to assess drug-related toxicity in laboratory animals and its impact on human safety in clinical trials. Due to the high volume of slides routinely evaluated, low-throughput, or narrowly performing DL methods that may work well in small-scale diagnostic studies or for the identification of a single abnormality are tedious and impractical for toxicologic pathology. Furthermore, regulatory requirements around good laboratory practice are a major hurdle for the adoption of DL in toxicologic pathology. This paper reviews the major DL concepts, emerging applications, and examples of DL in toxicologic pathology image analysis. We end with a discussion of specific challenges and directions for future research.

9.
Cell Rep Med ; 2(5): 100279, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34095881

RESUMEN

Aberrant NOTCH3 signaling and overexpression is oncogenic, associated with cancer stem cells and drug resistance, yet therapeutic targeting remains elusive. Here, we develop NOTCH3-targeted antibody drug conjugates (NOTCH3-ADCs) by bioconjugation of an auristatin microtubule inhibitor through a protease cleavable linker to two antibodies with differential abilities to inhibit signaling. The signaling inhibitory antibody rapidly induces ligand-independent receptor clustering and internalization through both caveolin and clathrin-mediated pathways. The non-inhibitory antibody also efficiently endocytoses via clathrin without inducing receptor clustering but with slower lysosomal co-localization kinetics. In addition, DLL4 ligand binding to the NOTCH3 receptor mediates transendocytosis of NOTCH3-ADCs into ligand-expressing cells. NOTCH3-ADCs internalize into receptor and ligand cells independent of signaling and induce cell death in both cell types representing an atypical mechanism of ADC cytotoxicity. Treatment of xenografts with NOTCH3-ADCs leads to sustained tumor regressions, outperforms standard-of-care chemotherapy, and allows targeting of tumors that overexpress NOTCH3 independent of signaling inhibition.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Inmunoconjugados/farmacología , Receptor Notch3/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Humanos , Inmunoconjugados/metabolismo , Oncogenes/efectos de los fármacos , Receptor Notch3/inmunología , Receptores Notch/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Regul Toxicol Pharmacol ; 120: 104857, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33387566

RESUMEN

Pharmaceutical and biotechnology companies rarely disclose their use of translational emerging safety biomarkers (ESBs) during drug development, and the impact of ESB use on the speed of drug development remains unclear. A cross-industry survey of 20 companies of varying size was conducted to understand current trends in ESB use and future use prospects. The objectives were to: (1) determine current ESB use in nonclinical and clinical drug development and impact on asset advancement; (2) identify opportunities, gaps, and challenges to greater ESB implementation; and (3) benchmark perspectives on regulatory acceptance. Although ESBs were employed in only 5-50% of studies/programs, most companies used ESBs to some extent, with larger companies demonstrating greater nonclinical use. Inclusion of ESBs in investigational new drug applications (INDs) was similar across all companies; however, differences in clinical trial usage could vary among the prevailing health authority (HA). Broader implementation of ESBs requires resource support, cross-industry partnerships, and collaboration with HAs. This includes generating sufficient foundational data, demonstrating nonclinical to clinical translatability and practical utility, and clearly written criteria by HAs to enable qualification. If achieved, ESBs will play a critical role in the development of next-generation, translationally-tailored standard laboratory tests for drug development.


Asunto(s)
Biomarcadores Farmacológicos/metabolismo , Ensayos Clínicos como Asunto/normas , Industria Farmacéutica/normas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Encuestas y Cuestionarios , Animales , Ensayos Clínicos como Asunto/métodos , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Industria Farmacéutica/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Predicción , Humanos , Preparaciones Farmacéuticas/metabolismo , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
11.
Mol Cancer Ther ; 19(10): 2068-2078, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32747418

RESUMEN

The approval of ado-trastuzumab emtansine (T-DM1) in HER2+ metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1. We utilized an empirical conjugation site screening campaign to identify the engineered ĸkK183C and K290C residues as those that maximized in vivo ADC stability, efficacy, and safety for a four drug-antibody ratio (DAR) ADC with this linker-payload combination. PF-06804103 incorporates the following novel design elements: (i) a new auristatin payload with optimized pharmacodynamic properties, (ii) a cleavable linker for optimized payload release and enhanced antitumor efficacy, and (iii) an engineered cysteine site-specific conjugation approach that overcomes the traditional safety liabilities of conventional conjugates and generates a homogenous drug product with a DAR of 4. PF-06804103 shows (i) an enhanced efficacy against low HER2-expressing breast, gastric, and lung tumor models, (ii) overcomes in vitro- and in vivo-acquired T-DM1 resistance, and (iii) an improved safety profile by enhancing ADC stability, pharmacokinetic parameters, and reducing off-target toxicities. Herein, we showcase our platform approach in optimizing ADC design, resulting in the generation of the anti-HER2 ADC, PF-06804103. The design elements of identifying novel sites of conjugation employed in this study serve as a platform for developing optimized ADCs against other tumor-specific targets.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Gástricas/tratamiento farmacológico , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunoconjugados/farmacología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Neoplasias Gástricas/patología
12.
Toxicol Sci ; 176(1): 224-235, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32298455

RESUMEN

Integrating nonclinical in vitro, in silico, and in vivo datasets holistically can improve hazard characterization and risk assessment. In pharmaceutical development, cardiovascular liabilities are a leading cause of compound attrition. Prior to clinical studies, functional cardiovascular data are generated in single-dose safety pharmacology telemetry studies, with structural pathology data obtained from repeat-dose toxicology studies with limited concurrent functional endpoints, eg, electrocardiogram via jacketed telemetry. Relationships between datasets remain largely undetermined. To address this gap, a cross-pharma collaboration collated functional and structural data from 135 compounds. Retrospective functional data were collected from good laboratory practice conscious dog safety pharmacology studies: effects defined as hemodynamic blood pressure or heart rate changes. Morphologic pathology findings (mainly degeneration, vacuolation, inflammation) from related toxicology studies in the dog (3-91 days repeat-dosing) were reviewed, harmonized, and location categorized: cardiac muscle (myocardium, epicardium, endocardium, unspecified), atrioventricular/aortic valves, blood vessels. The prevalence of cardiovascular histopathology changes was 11.1% of compounds, with 53% recording a functional blood pressure or heart rate change. Correlations were assessed using the Mantel-Haenszel Chi-square trend test, identifying statistically significant associations between cardiac muscle pathology and (1) decreased blood pressure, (2) increased heart rate, and between cardiovascular vessel pathology and increased heart rate. Negative predictive values were high, suggesting few compounds cause repeat-dose cardiovascular structural change in the absence of functional effects in single-dose safety pharmacology studies. Therefore, observed functional changes could prompt moving (sub)chronic toxicology studies forward, to identify cardiovascular liabilities earlier in development, and reduce late-stage attrition.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Animales , Presión Sanguínea , Perros , Evaluación Preclínica de Medicamentos , Electrocardiografía , Frecuencia Cardíaca , Hemodinámica , Masculino , Estudios Retrospectivos , Telemetría
13.
Clin Cancer Res ; 26(9): 2188-2202, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996389

RESUMEN

PURPOSE: Gastrointestinal cancers remain areas of high unmet need despite advances in targeted and immunotherapies. Here, we demonstrate potent, tumor-selective efficacy with PF-07062119, a T-cell engaging CD3 bispecific targeting tumors expressing Guanylyl Cyclase C (GUCY2C), which is expressed widely across colorectal cancer and other gastrointestinal malignancies. In addition, to address immune evasion mechanisms, we explore combinations with immune checkpoint blockade agents and with antiangiogenesis therapy. EXPERIMENTAL DESIGN: PF-07062119 activity was evaluated in vitro in multiple tumor cell lines, and in vivo in established subcutaneous and orthotopic human colorectal cancer xenograft tumors with adoptive transfer of human T cells. Efficacy was also evaluated in mouse syngeneic tumors using human CD3ε transgenic mice. IHC and mass cytometry were performed to demonstrate drug biodistribution, recruitment of activated T cells, and to identify markers of immune evasion. Combination studies were performed with anti-PD-1/PD-L1 and anti-VEGF antibodies. Toxicity and pharmacokinetic studies were done in cynomolgus macaque. RESULTS: We demonstrate that GUCY2C-positive tumors can be targeted with an anti-GUCY2C/anti-CD3ε bispecific, with selective drug biodistribution to tumors. PF-07062119 showed potent T-cell-mediated in vitro activity and in vivo efficacy in multiple colorectal cancer human xenograft tumor models, including KRAS- and BRAF-mutant tumors, as well as in the immunocompetent mouse syngeneic tumor model. PF-07062119 activity was further enhanced when combined with anti-PD-1/PD-L1 treatment or in combination with antiangiogenic therapy. Toxicity studies in cynomolgus indicated a monitorable and manageable toxicity profile. CONCLUSIONS: These data highlight the potential for PF-07062119 to demonstrate efficacy and improve patient outcomes in colorectal cancer and other gastrointestinal malignancies.


Asunto(s)
Anticuerpos Biespecíficos/administración & dosificación , Complejo CD3/inmunología , Neoplasias Colorrectales/terapia , Neoplasias Gastrointestinales/terapia , Inmunoterapia/métodos , Receptores de Enterotoxina/inmunología , Linfocitos T/inmunología , Traslado Adoptivo/métodos , Animales , Anticuerpos Biespecíficos/farmacocinética , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Femenino , Neoplasias Gastrointestinales/inmunología , Neoplasias Gastrointestinales/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Distribución Tisular
14.
BMC Genomics ; 21(1): 2, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898484

RESUMEN

BACKGROUND: The clinical success of immune checkpoint inhibitors demonstrates that reactivation of the human immune system delivers durable responses for some patients and represents an exciting approach for cancer treatment. An important class of preclinical in vivo models for immuno-oncology is immunocompetent mice bearing mouse syngeneic tumors. To facilitate translation of preclinical studies into human, we characterized the genomic, transcriptomic, and protein expression of a panel of ten commonly used mouse tumor cell lines grown in vitro culture as well as in vivo tumors. RESULTS: Our studies identified a number of genetic and cellular phenotypic differences that distinguish commonly used mouse syngeneic models in our study from human cancers. Only a fraction of the somatic single nucleotide variants (SNVs) in these common mouse cell lines directly match SNVs in human actionable cancer genes. Some models derived from epithelial tumors have a more mesenchymal phenotype with relatively low T-lymphocyte infiltration compared to the corresponding human cancers. CT26, a colon tumor model, had the highest immunogenicity and was the model most responsive to CTLA4 inhibitor treatment, by contrast to the relatively low immunogenicity and response rate to checkpoint inhibitor therapies in human colon cancers. CONCLUSIONS: The relative immunogenicity of these ten syngeneic tumors does not resemble typical human tumors derived from the same tissue of origin. By characterizing the mouse syngeneic models and comparing with their human tumor counterparts, this study contributes to a framework that may help investigators select the model most relevant to study a particular immune-oncology mechanism, and may rationalize some of the challenges associated with translating preclinical findings to clinical studies.


Asunto(s)
Antígeno CTLA-4/genética , Neoplasias del Colon/inmunología , Genómica , Animales , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Linfocitos T/inmunología
15.
Drug Discov Today Technol ; 37: 13-22, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34895651

RESUMEN

Antibody-drug conjugates (ADCs) are targeted therapies with the expectation of broadened therapeutic window due to tumor-specific drug delivery. Recent approvals, including ADCs with a novel payload class, topoisomerase-1 inhibitors, generated renewed excitement in the field. We provide a critical review of approved and late-stage molecules, discuss strategies in solid tumors and ADCs outside oncology. Our pharmacokinetics-based assessment of targeting suggests that ADCs, especially in solid tumors, rely on additional mechanisms for efficacy including slow-release of the payload to the circulation at potentially efficacious levels. Further adjustments in the technology are needed to fulfill the promise of true targeted drug delivery.


Asunto(s)
Inmunoconjugados , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico
16.
Clin Cancer Res ; 25(15): 4735-4748, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31085720

RESUMEN

PURPOSE: Immune checkpoint inhibitors (ICI) targeting PD1, PDL1, or CTLA4 are associated with immune-related adverse events (irAE) in multiple organ systems including myocarditis. The pathogenesis and early diagnostic markers for ICI-induced myocarditis are poorly understood, and there is currently a lack of laboratory animal model to enhance our understanding. We aimed to develop such a model using cynomolgus monkeys. EXPERIMENTAL DESIGN: Chinese-origin cynomolgus monkeys were dosed intravenously with vehicle or nivolumab 20 mg/kg plus ipilimumab 15 mg/kg once weekly and euthanized on day 29. RESULTS: Multiple organ toxicities were observed in cynomolgus monkeys, and were characterized by loose feces, lymphadenopathy, and mononuclear cell infiltrations of varying severity in heart, colon, kidneys, liver, salivary glands, and endocrine organs. Increased proliferation of CD4+ and CD8+ T lymphocytes as well as an increase in activated T cells and central memory T cells in the blood, spleen, and lymph nodes, were observed. Transcriptomic analysis suggested increased migration and activation of T cells and increased phagocytosis and antigen presentation in the heart. Mononuclear cell infiltration in myocardium was comprised primarily of T cells, with lower numbers of macrophages and occasional B cells, and was associated with minimal cardiomyocyte degeneration as well as increases in cardiac troponin-I and NT-pro-BNP. Morphologically, cardiac lesions in our monkey model are similar to the reported ICI myocarditis in humans. CONCLUSIONS: We have developed a monkey model characterized by multiple organ toxicities including myocarditis. This model may provide insight into the immune mechanisms and facilitate biomarker identification for ICI-associated irAEs.


Asunto(s)
Antineoplásicos Inmunológicos/toxicidad , Factores Inmunológicos/toxicidad , Inflamación/etiología , Linfocitos Infiltrantes de Tumor/inmunología , Miocarditis/inducido químicamente , Neoplasias/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Inflamación/patología , Ipilimumab/toxicidad , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Macaca fascicularis , Miocarditis/inmunología , Miocarditis/patología , Neoplasias/inmunología , Neoplasias/patología , Nivolumab/toxicidad
17.
Sci Transl Med ; 9(372)2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077676

RESUMEN

Disease relapse after treatment is common in triple-negative breast cancer (TNBC), ovarian cancer (OVCA), and non-small cell lung cancer (NSCLC). Therapies that target tumor-initiating cells (TICs) should improve patient survival by eliminating the cells that can drive tumor recurrence and metastasis. We demonstrate that protein tyrosine kinase 7 (PTK7), a highly conserved but catalytically inactive receptor tyrosine kinase in the Wnt signaling pathway, is enriched on TICs in low-passage TNBC, OVCA, and NSCLC patient-derived xenografts (PDXs). To deliver a potent anticancer drug to PTK7-expressing TICs, we generated a targeted antibody-drug conjugate (ADC) composed of a humanized anti-PTK7 monoclonal antibody, a cleavable valine-citrulline-based linker, and Aur0101, an auristatin microtubule inhibitor. The PTK7-targeted ADC induced sustained tumor regressions and outperformed standard-of-care chemotherapy. Moreover, the ADC specifically reduced the frequency of TICs, as determined by serial transplantation experiments. In addition to reducing the TIC frequency, the PTK7-targeted ADC may have additional antitumor mechanisms of action, including the inhibition of angiogenesis and the stimulation of immune cells. Together, these preclinical data demonstrate the potential for the PTK7-targeted ADC to improve the long-term survival of cancer patients.


Asunto(s)
Anticuerpos/uso terapéutico , Moléculas de Adhesión Celular/química , Inmunoconjugados/uso terapéutico , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/química , Aminobenzoatos/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Moléculas de Adhesión Celular/inmunología , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Femenino , Humanos , Inmunoterapia/métodos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Macaca fascicularis , Ratones , Ratones Endogámicos NOD , Ratones SCID , Microtúbulos/química , Recurrencia Local de Neoplasia/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Proteínas Tirosina Quinasas Receptoras/inmunología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Clin Cancer Res ; 23(7): 1760-1770, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27683177

RESUMEN

Purpose: Adverse reactions reported in patients treated with antibody-calicheamicin conjugates such as gemtuzumab ozogamicin (Mylotarg) and inotuzumab ozogamicin include thrombocytopenia and sinusoidal obstruction syndrome (SOS). The objective of this experimental work was to investigate the mechanism for thrombocytopenia, characterize the liver injury, and identify potential safety biomarkers.Experimental Design: Cynomolgus monkeys were dosed intravenously at 6 mg/m2/dose once every 3 weeks with a nonbinding antibody-calicheamicin conjugate (PF-0259) containing the same linker-payload as gemtuzumab ozogamicin and inotuzumab ozogamicin. Monkeys were necropsied 48 hours after the first administration (day 3) or 3 weeks after the third administration (day 63).Results: PF-0259 induced acute thrombocytopenia (up to 86% platelet reduction) with nadirs on days 3 to 4. There was no indication of effects on megakaryocytes in bone marrow or activation of platelets in peripheral blood. Microscopic evaluation of liver from animals necropsied on day 3 demonstrated midzonal degeneration and loss of sinusoidal endothelial cells (SECs) associated with marked platelet accumulation in sinusoids. Liver histopathology on day 63 showed variable endothelial recovery and progression to a combination of sinusoidal capillarization and sinusoidal dilation/hepatocellular atrophy, consistent with early SOS. Among biomarkers evaluated, there were early and sustained increases in serum hyaluronic acid (HA) that correlated well with serum aspartate aminotransferase and liver microscopic changes, suggesting that HA may be a sensitive diagnostic marker of the liver microvascular injury.Conclusions: These data support the conclusion that target-independent damage to liver SECs may be responsible for acute thrombocytopenia (through platelet sequestration in liver sinusoids) and development of SOS. Clin Cancer Res; 23(7); 1760-70. ©2016 AACR.


Asunto(s)
Aminoglicósidos/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Trombocitopenia/patología , Aminoglicósidos/efectos adversos , Aminoglicósidos/química , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados/efectos adversos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Enediinos/administración & dosificación , Enediinos/química , Gemtuzumab , Humanos , Ácido Hialurónico/sangre , Inmunoconjugados/administración & dosificación , Inmunoconjugados/efectos adversos , Inotuzumab Ozogamicina , Hígado/efectos de los fármacos , Macaca fascicularis , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Trombocitopenia/inducido químicamente
19.
Toxicol Pathol ; 42(7): 1105-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24717899

RESUMEN

Differences were examined between male and female Sprague-Dawley rats in the response of 16 urinary biomarkers (measured using several assay platforms) to renal injury produced by gentamicin administered subcutaneously for 10 days at a dosage of 75 mg/kg. Urinary biomarkers expressed as fold difference from contemporaneous controls and renal histopathology were assessed after 3 and 10 doses. On day 4, minimal proximal tubular changes were observed microscopically in all males but no females; on day 11, more extensive and more severe injury was observed to a similar extent in all animals of both sexes. Modest increases (maximum 5-fold) in all urinary biomarkers (except epidermal growth factor [EGF], which was decreased) on day 4 and marked elevations (maximum 271-fold) on day 11 were seen consistently in both sexes. However, the magnitude of the increases differed between the sexes. On day 4, despite the lack of tubular injury, many biomarkers were more elevated in females than males but this rarely led to statistically significant sex differences; only 2 biomarkers (ß2-microglobulin and total protein) showed a greater increase in males than females in line with the histopathology. On day 11, there were many more biomarkers that showed a statistically significant difference between the sexes in fold change with treatment; in line with the results on day 4, the majority of biomarkers were more increased in females than males. It remains unresolved if sex differences in the magnitude of biomarker response at injury threshold would lead to any difference in diagnostic interpretation between the sexes. These data highlight the need for publication of more studies using animals of both sexes to fully explore the influence of sex on the diagnostic performance of the novel biomarkers.


Asunto(s)
Biomarcadores/orina , Gentamicinas/efectos adversos , Enfermedades Renales/patología , Riñón/efectos de los fármacos , Factores Sexuales , Animales , Relación Dosis-Respuesta a Droga , Femenino , Gentamicinas/administración & dosificación , Riñón/patología , Enfermedades Renales/inducido químicamente , Masculino , Ratas , Ratas Sprague-Dawley , Microglobulina beta-2/orina
20.
Toxicol Pathol ; 42(7): 1092-104, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24670813

RESUMEN

Differences were examined between male and female Sprague-Dawley rats in basal levels of a wide range of urinary biomarkers, including 7 recently qualified biomarkers. The data were generated from urine samples collected on 3 occasions from untreated rats included in a study of the effect of gentamicin nephrotoxicity on urinary renal biomarkers, reported in a companion article in this journal (Gautier et al. 2014). The performance of multiple assays (9 singleplex assays and 2 multiplex platforms from Rules Based Medicine [RBM] and Meso Scale Discovery [MSD]) was evaluated, and normal ranges and variability estimates were derived. While variability was generally greater on the RBM platform than other assays, the more striking difference in the results from different assays was in magnitude. Where differences were observed between assays for an individual biomarker, they were seen in both sexes and consistent across samples collected at different time points. Differences of up to 15-fold were observed for some biomarker values between assays indicating that results generated using different assays should not be compared. For 8 biomarkers, there was compelling evidence for a sex difference. Baseline values in males were significantly higher than in females for total protein, ß2-microglobulin, clusterin, cystatin-C, glutathione-S-transferase (GST-α), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial growth factor (VEGF); female values were significantly higher than that of males for albumin. The largest sex differences (male greater than female by 2- to 11-fold) were seen with ß2-microglobulin, GST-α, and TIMP-1. These data add substantially to the limited body of knowledge in this area and provide a useful framework for evaluation of the potential relevance of sex differences in the diagnostic performance of these biomarkers.


Asunto(s)
Bioensayo/métodos , Biomarcadores/orina , Factores Sexuales , Animales , Clusterina/genética , Clusterina/metabolismo , Cistatina C/genética , Cistatina C/metabolismo , Femenino , Gentamicinas/administración & dosificación , Gentamicinas/efectos adversos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Valores de Referencia , Reproducibilidad de los Resultados , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA