Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
ACS Appl Mater Interfaces ; 15(50): 59055-59065, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055639

RESUMEN

Chemical vapor deposition (CVD) offers a large-area, scalable, and conformal growth of perovskite thin films without the use of solvents. Low-dimensional organic-inorganic halide perovskites, with alternating layers of organic spacer groups and inorganic perovskite layers, are promising for enhancing the stability of optoelectronic devices. Moreover, their multiple quantum-well structures provide a powerful platform for tuning excitonic physics. In this work, we show that the CVD process is conducive to the growth of 2D hybrid halide perovskite films. Using butylammonium (BA) and phenylethylammonium (PEA) cations, the growth parameters of BA2PbI4 and PEA2PbI4 and mixed halide perovskite films were first optimized. These films are characterized by well-defined grain boundaries and display characteristic absorption and emission features of the 2D quantum wells. X-ray diffraction (XRD) and a noninteger dimensionality model of the absorption spectrum provide insights into the orientation of the crystalline planes. Unlike BA2PbI4, temperature-dependent photoluminescence measurements from PEA2PbI4 show a single excitonic peak throughout the temperature range from 20 to 350 K, highlighting the lack of defect states. These results further corroborate the temperature-dependent synchrotron-based XRD results. Furthermore, the nonlinear optical properties of the CVD-grown perovskite films are investigated, and a high third harmonic generation efficiency is observed.

2.
Nanoscale ; 14(42): 15607-15616, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36268821

RESUMEN

The solution processability of organic semiconductors and conjugated polymers along with the advent of nanomaterials as conducting inks have revolutionized next-generation flexible consumer electronics. Another equally important class of nanomaterials, self-assembled peptides, heralded as next-generation materials for bioelectronics, have a lot of potential in printed technology. In this minireview, we address the self-assembly process in dipeptides, their application in electronics, and recent progress in three-dimensional printing. The prospect of a generalizable path for nanopatterning self-assembled peptides using ice lithography and its challenges are further discussed.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Electrónica/métodos , Semiconductores , Péptidos , Impresión Tridimensional
3.
ACS Appl Mater Interfaces ; 13(32): 38579-38585, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34358425

RESUMEN

While the layered hybrid Ruddlesden-Popper (RP) halide perovskites have already established themselves as the frontrunners among the candidates in optoelectronics, their all-inorganic counterparts remain least explored in the RP-type perovskite family. Herein, we study and compare the optoelectronic properties of all-inorganic CsPbBr3 perovskite nanocrystals (PNCs) with and without RP planar faults. We find that the RP-CsPbBr3 PNCs possess both higher exciton binding energy and longer exciton lifetimes. The former is ascribed to a quantum confinement effect in the PNCs induced by the RP faults. The latter is attributed to a spatial electron-hole separation across the RP faults. A striking difference is found in the up-conversion photoluminescence response in the two types of CsPbBr3 PNCs. For the first time, all-inorganic RP-CsPbBr3 PNCs are tested in light-emitting devices and shown to significantly outperform the non-RP CsPbBr3 PNCs.

4.
J Phys Chem Lett ; 12(16): 4092-4097, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33885324

RESUMEN

Lead halide perovskites provide a test bed for exploring nonlinear optical properties. Although the underlying centrosymmetric crystal structure of 3D lead halide perovskites precludes the phenomenon of second harmonic generation, the third and higher-order harmonic generation are allowed. In this work, we probe the third harmonic generation (THG) from CsPbBr3 nanocrystals (NCs) and compare it to the THG from CsPbBr3 NCs with Ruddlesden-Popper planar faults (RP-CsPbBr3), formed via postsynthetic fusion-growth. The THG from CsPbBr3 NCs is negligible compared with that of RP-CsPbBr3 NCs within a wide range of femtosecond excitation wavelengths. We further compare the THG from a thin film of RP-CsPbBr3 with that of a single crystal of methylammonium lead bromide (MAPbBr3). The THG efficiency of RP-CsPbBr3 is found to be three times greater than that of MAPbBr3. An effective third-order susceptibility of the order of 10-18 m2 V-2 is obtained for a RP-CsPbBr3 film, opening up the prospect of inorganic halide perovskite NCs with planar defects for a range of nonlinear optical applications.

5.
ACS Appl Mater Interfaces ; 12(24): 26757-26775, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32436693

RESUMEN

The use of polymer ferroelectric dielectrics in organic field-effect transistors (FETs) for nonvolatile memory application was demonstrated more than 15 years ago. The ferroelectric dielectric polyvinylidene fluoride (PVDF) and its copolymers are most widely used for such applications. In addition to memory applications, polymer ferroelectrics as a dielectric layer in organic FETs yield insights into interfacial transport properties. Advantages of polymer ferroelectric dielectrics are their high dielectric constant compared to other polymer dielectrics and their tunable dielectric constant with temperature. Further, the polarization strength may also be tuned by externally poling the ferroelectric dielectric layer. Thus, PVDF and its copolymers provide a unique testbed not just for investigating polarization induced transport in organic FETs, but also enhancing device performance. This article discusses recent developments of PVDF-based ferroelectric organic FETs and capacitors with a focus on tuning transport properties. It is shown that FET carrier mobilities exhibit a weak temperature dependence as long as the dielectric is in the ferroelectric phase, which is attributed to a polarization fluctuation driven process. The low carrier mobilities in PVDF-based FETs can be enhanced by tuning the poling condition of the dielectric. In particular, by using solution-processed small molecule semiconductors and other donor-acceptor copolymers, it is shown that selective poling of the PVDF-based dielectric layer dramatically improves FET properties. Finally, the prospects of further improvement in organic ferroelectric FETs and their challenges are provided.

6.
ACS Appl Mater Interfaces ; 10(23): 19844-19852, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29771117

RESUMEN

Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention because of their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge transport properties of n-dialkyl side-chain-substituted thiophene DPP end-capped with a phenyl group (Ph-TDPP-Ph) monomer in FETs which were fabricated by vacuum deposition and solvent coating. Grazing-incidence X-ray diffraction (GIXRD) from bottom-gate, bottom-contact FET architectures was measured with and without biasing. Ph-TDPP-Ph reveals a polymorphic structure with π-conjugated stacking direction oriented in-plane. The unit cell comprises either one monomer with a = 20.89 Å, b = 13.02 Å, c = 5.85 Å, α = 101.4°, ß = 90.6°, and γ = 94.7° for one phase (TR1) or two monomers with a = 24.92 Å, b = 25.59 Å, c = 5.42 Å, α = 80.3°, ß = 83.5°, and γ = 111.8° for the second phase (TR2). The TR2 phase thus signals a shift from a coplanar to herringbone orientation of the molecules. The device performance is sensitive to the ratio of the two triclinic phases found in the film. Some of the best FET performances with p-type carrier mobilities of 0.1 cm2/V s and an on/off ratio of 106 are for films that comprise mainly the TR1 phase. GIXRD from in operando FETs demonstrates the crystalline stability of Ph-TDPP-Ph.

7.
J Chem Phys ; 147(8): 084703, 2017 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28863534

RESUMEN

Enhancing Raman signatures of molecules by self-assembled metal nanoparticles, nanolithography patterning, or by designing plasmonic nanostructures is widely used for detection of low abundance biological systems. Self-assembled peptide nanostructures provide a natural template for tethering Au and Ag nanoparticles due to its fractal surface. Here, we show the use of L,L-diphenylalanine micro-nanostructures (FF-MNSs) for the organization of Ag and Au nanoparticles (Nps) and its potential as surface-enhanced Raman scattering (SERS)-active substrates. The FF-MNSs undergo an irreversible phase transition from hexagonally packed (hex) micro-nanotubes to an orthorhombic (ort) structure at ∼150 °C. The metal Nps form chains on hex FF-MNSs as inferred from transmission electron microscopy images and a uniform non-aggregated distribution in the ort phase. The high luminescence from the ort FF-MNS phase precludes SERS measurements with AgNps. The calculated Raman spectra using density-functional theory shows a higher intensity from rhodamine 6G (R6G) molecule in the presence of an Ag atom bound to ort FF compared with hex FF. The SERS spectra obtained from R6G bound to FF-MNSs with AuNps clearly show a higher enhancement for the ort phase compared with hex FF, corroborating our theoretical calculations. Our results indicate that FF-MNSs both in the hex and ort phases can be used as substrates for the SERS analysis with different metal nanoparticles, opening up a novel class of optically active bio-based substrates.

8.
Phys Chem Chem Phys ; 19(4): 3084-3093, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28079210

RESUMEN

Self-assembled l,l-diphenylalanine (FF) peptide micro/nanotubes represent a class of biomimetic materials with a non-centrosymmetric crystal structure and strong piezoelectricity. The peptide nanotubes synthesized by a liquid phase method yield tube lengths in the hundreds of micron range, inner diameters in the few hundred nanometer range, and outer diameters in the 5-15 µm range. Second harmonic generation (SHG) polarimetry from individual self-assembled FF nanotubes is used to obtain the nonlinear (NLO) optical coefficients as a function of the tube diameter and thermal treatment. The ratio of the shear to the longitudinal component (d15/d33) of the NLO coefficient increases with the diameter of the tubes. One of the transverse components of the nonlinear coefficient is found to be negative, and its magnitude with respect to the longitudinal component increases with the tube diameter. Thermal treatment of individual FF tubes has a similar effect upon increasing the diameter of the tubes in SHG polarimetry. Concurrent Raman scattering measurements from individual FF tubes show a distinct change in the low frequency (100 cm-1) region with the diameter of the tubes reflecting subtle effects of water.


Asunto(s)
Materiales Biomiméticos/química , Nanotubos de Péptidos/química , Calor , Espectrometría Raman , Agua/química
9.
Nanotechnology ; 28(2): 025302, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27905323

RESUMEN

Classical methods for enhancing the electromagnetic field from substrates for spectroscopic applications, such as surface-enhanced Raman spectroscopy (SERS), have involved the generation of hotspots through directed self-assembly of nanoparticles or by patterning nanoscale features using expensive nanolithography techniques. A novel large-area, cost-effective soft lithographic technique involving glancing angle deposition (GLAD) of silver on polymer gratings is reported here. This method produces hierarchical nanostructures with high enhancement factors capable of analyzing single-molecule SERS. The uniform ordered and patterned nanostructures provide extraordinary field enhancements that serve as excitatory hotspots and are herein interrogated by SERS. The high spatial homogeneity of the Raman signal and signal enhancement over a large area from a self-assembled monolayer (SAM) of 2-naphthalenethiol demonstrated the uniformity of the hotspots. The enhancement was shown to have a critical dependence on the underlying nanostructure via the surface energy landscape and GLAD angles for a fixed deposition thickness, as evidenced by atomic force microscopy and scanning electron microscopy surface analysis of the substrate. The nanostructured surface leads to an extremely concentrated electromagnetic field at sharp nanoscale peaks, here referred to as 'nano-protrusions', due to the coupling of surface plasmon resonance (SPR) with localized SPR. These nano-protrusions act as hotspots which provide Raman enhancement factors as high as 108 over a comparable SAM on silver. Comparison of our substrate with the commercial substrate Klarite™ shows higher signal enhancement and minimal signal variation with hotspot spatial distribution. By using the proper plasmon resonance angle corresponding to the laser source wavelength, further enhancement in signal intensity can be achieved. Single-molecule Raman spectra for rhodamine 6G are obtained from the best SERS substrate (a GLAD angle of 60°). The single-molecule spectrum is invariant over the substrate, due to the patterned ordered nanostructures (nano-protrusions).

10.
Rep Prog Phys ; 79(6): 066601, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27116082

RESUMEN

This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been highlighted by high pressure optical spectroscopy whilst analogous x-ray diffraction experiments remain less frequent. By focusing on a class of blue-emitting π-conjugated polymers, polyfluorenes, this article reviews optical spectroscopic studies under hydrostatic pressure, addressing the impact of molecular and intermolecular interactions on optical excitations, electron-phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map of pressure-driven intra- and interchain interactions. Key obstacles to obtain further advances are identified and experimental methods to resolve them are suggested.

11.
ACS Appl Mater Interfaces ; 6(23): 21408-15, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25376495

RESUMEN

Peptide-based nanostructures derived from natural amino acids are superior building blocks for biocompatible devices as they can be used in a bottom-up process without the need for expensive lithography. A dense nanostructured network of l,l-diphenylalanine (FF) was synthesized using the solid-vapor-phase technique. Formation of the nanostructures and structure-phase relationship were investigated by electron microscopy and Raman scattering. Thin films of l,l-diphenylalanine micro/nanostructures (FF-MNSs) were used as the dielectric layer in pentacene-based field-effect transistors (FETs) and metal-insulator-semiconductor diodes both in bottom-gate and in top-gate structures. Bias stress studies show that FF-MNS-based pentacene FETs are more resistant to degradation than pentacene FETs using FF thin film (without any nanostructures) as the dielectric layer when both are subjected to sustained electric fields. Furthermore, it is demonstrated that the FF-MNSs can be functionalized for detection of enzyme-analyte interactions. This work opens up a novel and facile route toward scalable organic electronics using peptide nanostructures as scaffolding and as a platform for biosensing.


Asunto(s)
Nanoestructuras/química , Péptidos/química , Fenilalanina/análogos & derivados , Transistores Electrónicos , Dipéptidos , Microscopía Electrónica , Péptidos/síntesis química , Fenilalanina/síntesis química , Fenilalanina/química , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA