Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 8(34): 4018-28, 2006 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17028692

RESUMEN

We report on the impregnation of THF solutions of the low-valent heterometallic cluster NEt(4)[Co(3)Ru(CO)(12)] into two mesoporous silica matrices, amorphous xerogels and ordered MCM-41, and a study of its thermal decomposition into metallic nanoparticles by X-ray diffraction, transmission electron microscopy and in situ magnetic measurements under controlled atmospheres. The decomposition of the cluster was monitored as a function of temperature by examining the chemical composition of the particles, their size distributions and their structures as well as their magnetic properties. Treatment under inert atmosphere (i.e. argon) at temperatures below 200 degrees C resulted in the formation of segregated spherical particles of hcp-ruthenium (2.3 +/- 1.0 nm) and hcp-cobalt (3.1 +/- 0.9 nm). The latter is transformed to fcc-cobalt (3.2 +/- 1.0 nm) above 270 degrees C. At higher temperatures, Co-Ru alloying takes place and the Ru content of the particles increases with increasing temperature to reach the nominal composition of the molecular precursor, Co(3)Ru. The particles are more evenly distributed in the MCM-41 framework compared to the disordered xerogel and also show a narrower size distribution. Owing to the different magnetic anisotropy of hcp- and fcc-cobalt, which results in different blocking temperatures, we were able to clearly identify the products formed at the early stages of the thermal decomposition procedure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA