Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Phys Chem C Nanomater Interfaces ; 128(39): 16733-16739, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39380974

RESUMEN

In this paper, the local bonding structure in amorphous zinc tin oxide (a-ZTO) is probed using a combination of XANES and EXAFS techniques at the Zn and Sn K-edges to gain insight into charge carrier generation in the material. a-ZTO is prepared using two growth methods; spray pyrolysis and magnetron sputtering. It is seen that a-ZTO grown by magnetron sputtering shows no changes in the chemical environment as the cation ratio is varied; meanwhile, XANES analysis of spray pyrolysis grown samples shows alterations to spectra likely due to the effects caused by different precursors. Although a slight shift in Sn-O bond length is visible between magnetron sputtered and spray grown samples, no correlation could be discerned between bond length and variation in cation ratio. It is concluded that a-ZTO, while amorphous over longer ranges, is locally composed of ZnO and SnO2 "building blocks". An alteration in the cation ratio changes the hybridization at the conduction band minimum, resulting in the observed variation in the mobility, charge carrier concentration, and bandgap.

2.
ACS Appl Mater Interfaces ; 16(28): 37017-37027, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38968699

RESUMEN

In this work, the production of novel multishell silver indium selenide quantum dots (QDs) shelled with zinc selenide and zinc sulfide through a multistep synthesis precisely designed to develop high-quality red-emitting QDs is explored. The formation of the multishell nanoheterostructure significantly improves the photoluminescence quantum yield of the nanocrystals from 3% observed for the silver indium selenide core to 27 and 46% after the deposition of the zinc selenide and zinc sulfide layers, respectively. Moreover, the incorporation of the multishelled QDs in a poly(methyl methacrylate) (PMMA) matrix via in situ radical polymerization is investigated, and the role of thiol ligand passivation is proven to be fundamental for the stabilization of the QDs during the polymerization step, preventing their decomposition and the relative luminescence quenching. In particular, the role of interface chemistry is investigated by considering both surface passivation by inorganic zinc chalcogenide layers, which allows us to improve the optical properties, and organic thiol ligand passivation, which is fundamental to ensuring the chemical stability of the nanocrystals during in situ radical polymerization. In this way, it is possible to produce silver-indium selenide QD-PMMA composites that exhibit bright red luminescence and high transparency, making them promising for potential applications in photonics. Finally, it is demonstrated that the new silver indium selenide QD-PMMA composites can serve as an efficient color conversion layer for the production of red light-emitting diodes.

3.
Angew Chem Int Ed Engl ; 63(41): e202409313, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38995147

RESUMEN

Chirality in inorganic nanostructures has recently stimulated the attention of many researchers, both to unravel fundamental questions on the origin of chirality in inorganic and hybrid materials, as well as to introduce novel promising properties that are originated by the symmetry breaking. MoS2 is one of the most investigated among the large family of layered transition metal dichalcogenides. In particular, the metastable metallic 1T-MoS2 phase is of large interest for potential applications. However, due to thermodynamic reasons, the synthesis of 1T-MoS2 phase is quite challenging. Herein, we present the first synthesis of chiral 1T-MoS2 phase which shows remarkably high chiroptical activity with a g-factor up to 0.01. Chiral 1T-MoS2 was produced using tartaric acid as a chiral ligand to induce symmetry breaking during the material's growth under hydrothermal conditions, leading to the formation of distorted hierarchical nanosheet assemblies exhibiting chiral morphology. Thorough optimization of the synthetic conditions was carried out to maximize chiroptical activity, which is strongly related to the nanostructures' morphology. Finally, the formation mechanism of the chiral 1T-MoS2 nanosheet assemblies was investigated, focusing on the role of molecular intermediates in the growth of the nanosheets and the transfer of chirality.

4.
Nanoscale Horiz ; 9(6): 1013-1022, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38597212

RESUMEN

In recent years, extensive research efforts have been dedicated to the investigation of CdSe/CdS-based quantum-confined nanostructures, driven by their distinctive properties. The morphologies of these nanostructures have been shown to directly affect their properties, an area which has proven to be an important field of study. Herein, we report a new morphology of CdSe/CdS core-shell heterostructures in the form of a 'nanonail' - a modified nanorod-like morphology, in which a distinctive triangular head can be observed at one end of the structure. In-depth studies of this morphology reveal a material with tuneable rod length and width, as well as exceptional photoluminescent properties. Following this, we have demonstrated the ability to induce chiroptical activity via ligand exchange, revealing the important role of the specific morphology, shell thickness and chiral ligand concentration in the effect of ligand induced chirality. In addition, the cellular uptake and cytotoxicity of obtained chiral nanostructures were evaluated on human lung-derived A549 cancer cells, revealing a significant enantioselectivity in biological activity. Finally, analysis on monolayers of the material demonstrate the complete absence of FRET processes. Overall, this CdSe/CdS heterostructure is another tuneable morphology of a very important nanomaterial, one which shows great advantages and a range of potential applications.

5.
ACS Omega ; 9(4): 4347-4358, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313544

RESUMEN

The combination of 0D nanoparticles with 2D nanomaterials has attracted a lot of attention over the last years due to the unique multimodal properties of resulting 0D-2D nanocomposites. In this work, we developed boron nitride nanosheets (BNNS) functionalized with manganese ferrite magnetic nanoparticles (MNPs). The functionalization process involved attachment of MNPs to exfoliated BNNS by refluxing the precursor materials in a polyol medium. Characterization of the produced BNNS-MNP composites was carried out using powder X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adhesion of MnFe2O4 magnetic nanoparticles onto the BNNS remained unaffected by repeated sonication and heating in a furnace at 400 °C, underscoring the robust nature of the formed bond. FTIR spectra and XPS deconvolution confirmed the presence of strong bonding between BNNS and the MNPs. Membranes were fabricated from the BNNS and the BNNS-MnFe2O4 nanocomposites for evaluating their efficiency in removing the methylene blue dye pollutant. The membranes have been characterized by scanning electron microscopy, Brunauer-Emmett-Teller surface area analysis, and mercury intrusion porosimetry. The effectiveness of dye removal was monitored using ultraviolet-visible spectroscopy. The BNNS-MnFe2O4 nanocomposite membranes exhibited enhanced MB capture compared to membranes made from pure BNNS alone. The recyclability assessment of BNNS-MnFe2O4 demonstrated exceptional performance, retaining 92% efficiency even after eight cycles. These results clearly demonstrate the high potential of these magnetic nanocomposites as reusable materials for water filtration membranes. Furthermore, the introduction of magnetic functionality as part of the membrane brings an exciting opportunity for in situ magnetic heating of the membrane, which shall be explored in future work.

6.
Adv Mater ; 36(18): e2308912, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241607

RESUMEN

Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design and discovery, and reducing the need for time-consuming and labor-intensive experiments and simulations. In contrast to their achiral counterparts, the application of machine learning for chiral nanomaterials is still in its infancy, with a limited number of publications to date. This is despite the great potential of machine learning to advance the development of new sustainable chiral materials with high values of optical activity, circularly polarized luminescence, and enantioselectivity, as well as for the analysis of structural chirality by electron microscopy. In this review, an analysis of machine learning methods used for studying achiral nanomaterials is provided, subsequently offering guidance on adapting and extending this work to chiral nanomaterials. An overview of chiral nanomaterials within the framework of synthesis-structure-property-application relationships is presented and insights on how to leverage machine learning for the study of these highly complex relationships are provided. Some key recent publications are reviewed and discussed on the application of machine learning for chiral nanomaterials. Finally, the review captures the key achievements, ongoing challenges, and the prospective outlook for this very important research field.

7.
Nanoscale ; 15(46): 18753-18761, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37953729

RESUMEN

Chiral inorganic nanostructures have attracted a lot of attention over the last few years. Here we report the first observation of chirality in indium sulfide nanoparticles, which have been produced by a co-precipitation reaction in the presence of cysteine as a chiral agent. The process resulted in the production of spherical nanoparticles with an average diameter of around 3.6 nm. Circular dichroism spectroscopy of the nanoparticles showed an intense chiroptical signal corresponding to the indium sulfide excitonic transition, confirming the successful transfer of chirality to the In2S3 inorganic matrix. Nuclear magnetic resonance analysis of a colloidal solution of the nanoparticles demonstrated critical evidence of chemisorption of the chiral ligand on the surface of the nanoparticles and revealed a characteristic fast chemical exchange between the ligand chemisorbed on the surface of the nanoparticles and the free ligand in solution. Finally, the effect of the chiral ligand's structure on the transfer of chirality was investigated, with consideration of other amino acid ligands, and the critical role of the thiolate group in the optimisation of the chiral transfer was observed. This research is expected to stimulate further development and applications of new chiral semiconductor nanomaterials.

8.
ACS Appl Nano Mater ; 6(13): 12526-12536, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37469505

RESUMEN

Nanofiltration (NF) is one of the emerging technologies that is very promising for water purification among many other applications. 2D boron nitride (BN) based nanomaterials are excellent building blocks for NF membranes. In our work, BN nanosheets (BNNS) have been functionalized with magnetic nanoparticles (MNPs) to form BNNS-MNP nanocomposites. It was found that the nanocomposites are stable with the MNPs giving very good coverage with both magnetite and cobalt ferrite MNPs and showing good attachment and stability to sonication. These nanocomposites have been tested for removal of methylene blue (MB) dye and MNPs from water. BNNS-magnetite nanocomposites showed higher removal efficiency of the MB from water than the corresponding pure BNNS, while the BNNS-cobalt ferrite removal efficiency was slightly less than the pure BNNS. The BNNS-cobalt ferrite material was regenerated by burning off the MB and recycled to show the recyclability of this material. The BNNS membranes were tested for filtration of 14 ± 4 nm magnetite MNPs and were found to capture 100% of the nanoparticles with no MNPs left in the filtrate. Thus, we have developed magnetic nanocomposite membranes, which have demonstrated great potential for water remediation. We believe that this research opens up promising ways for production of 2D nanocomposite materials with multiple applications.

9.
Nanoscale Adv ; 5(12): 3209-3213, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37325543

RESUMEN

We report a novel magnetically-facilitated approach to produce 1-D 'nano-necklace' arrays composed of 0-D magnetic nanoparticles, which are assembled and coated with an oxide layer to produce semi-flexible core@shell type structures. These 'nano-necklaces' demonstrate good MRI relaxation properties despite their coating and permanent alignment, with low field enhancement due to structural and magnetocrystalline anisotropy.

10.
Chem Commun (Camb) ; 59(40): 6024-6027, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37186125

RESUMEN

Herein we report new chiral luminescent Cs3Cu2Br5 needle-like microcrystals and the analysis of their optical properties and the effect of the ligand structure on the transfer of chirality.

11.
RSC Adv ; 13(16): 10513-10522, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37021101

RESUMEN

Removal of dye pollutants from wastewater is among the most important emerging needs in environmental science and engineering. The main objective of our work is to develop new magnetic core-shell nanostructures and explore their use for potential removal of pollutants from water using an external magnetic field. Herein, we have prepared magnetic core-shell nanoparticles that demonstrated excellent dye pollutant adsorbent properties. These nanoparticles are composed of a manganese ferrite magnetic core coated with silica, to protect the core and enable further functionalisation, then finally coated with ceria, which is shown to be an effective adsorbent. The magnetic core-shell nanostructures have been synthesized by a modification of solvothermal synthesis. The nanoparticles were fully characterised at each stage of the synthesis by powder X-ray diffraction (pXRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). These particles were found to be effective in removing methylene blue (MB) dye from water, which was validated by UV-visible (UV-vis) spectroscopy. These particles can be quickly removed from solution using a permanent magnet and then can be recycled after being placed in the furnace at 400 °C to burn off any organic residues. The particles were found to retain their ability to adsorb the pollutant after several cycles and TEM images of the particles after several cycles showed no change in the morphology. This research demonstrated the capacity of magnetic core-shell nanostructures to be used for water remediation.

12.
Materials (Basel) ; 16(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36984290

RESUMEN

In this study, new composite materials comprising zeolitic imidazolate framework (ZIF) structures and microchannel glass (MCG) plates were fabricated using the hydrothermal method and their morphological and spectral properties were investigated using XRD, SEM, FTIR, and Raman spectroscopy. XRD studies of powder samples revealed the presence of an additional phase for a ZIF-8 sample, whereas ZIF-67 samples, which were prepared through two different chemical routes, showed no additional phases. A detailed analysis of the FTIR and micro-Raman spectra of the composite samples revealed the formation of stable ZIF structures inside the macropores of the MCG substrate. The hydrophilic nature of the MCG substrate and its interaction with the ZIF structure resulted in the formation of stable ZIF-MCG composites. We believe that these composite materials may find a wide range of important applications in the field of sensors, molecular sieving.

13.
Org Biomol Chem ; 21(14): 2905-2909, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36942668

RESUMEN

Trehalase is an important enzyme in the metabolic cascades of many organisms, catalysing the hydrolysis of the disaccharide trehalose. Herein we describe the first examples of fluorometric nanoprobes for detection of trehalase, based on trehalose-functionalised quantum dots (QDs). QDs cross-linked with trehalose form aggregates, which are released upon enzymatic cleavage of the trehalose glycosidic bond proportionally to the enzyme concentration, offering a unique and efficient approach for specific sensing of this biologically important enzyme.


Asunto(s)
Puntos Cuánticos , Trehalosa , Trehalosa/química , Trehalasa/química , Trehalasa/metabolismo , Disacáridos/metabolismo
14.
Nanomaterials (Basel) ; 14(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38202555

RESUMEN

The development of multimodal nano- and micro-structures has become an increasingly popular area of research in recent years. In particular, the combination of two or more desirable properties within a single structure opens multiple opportunities from biomedicine, sensing, and catalysis, to a variety of optical applications. Here, for the first time, we report the synthesis and characterization of multimodal chiroptically active CaCO3 nanocomposites. These composites have been prepared by a modified microemulsion method in the presence of an amino acid (cysteine). Following this, additional modalities have been introduced by loading the composites with luminescent nanoparticles or doping with Eu3+ ions. The luminescent composites have been produced by the incorporation of CuInZnS/ZnS or CdSe@ZnS/ZnS core/shell quantum dots, or via doping with trivalent europium. In this manner, we have produced chiroptically active composites with orange, green, and red luminescence. Overall, this work demonstrates the unique advantage and potential of our approach and new class of chiroptically active CaCO3 nanocomposites, which display tunable functionality to specific requirements via the incorporation of desired ions, nanoparticles, and chirality of the structure.

15.
Nanoscale Adv ; 4(22): 4895-4904, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36545391

RESUMEN

Boron nitride (BN) based 2D nanomaterials are an emerging class of materials for the development of new membranes for nanofiltration applications. Here, we report the preparation, characterisation and testing of highly promising nanofiltration membranes produced from partially oxidised BN (BNOx) 2D nanosheets. In our work, the partial oxidation of BN was successfully achieved by heating the bulk h-BN powder in air at 1000 °C, resulting in BNOx product. The characterisation of the sample showed the presence of B-OH groups corresponding to the partial oxidisation of the BN. The BNOx material was then exfoliated in water and used to produce membranes, using vacuum filtration. These membranes were characterised using electron microscopy, BET and mercury porosimetry techniques. The membranes have also been tested in water purification and removal of several typical water-soluble dyes, demonstrating outstanding retention values close to 100%. We believe that this research opens up new opportunities for further production, as well as chemical functionalisation and modification of membranes for nanofiltration and separation technologies.

16.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364693

RESUMEN

Salmonella is a bacterial pathogen which is one of the leading causes of severe illnesses in humans. The current study involved the design and development of two methods, respectively using iron oxide nanoparticle (IONP) and iron core gold nanoparticle (ICGNP), conjugated with the Salmonella antibody and the fluorophore, 4-Methylumbelliferyl Caprylate (4-MUCAP), used as an indicator, for its selective and sensitive detection in contaminated food products. Twenty double-blind beverage samples, spiked with Salmonella enteritidis, Staphylococcus aureus, and Escherichia coli, were prepared in sterile Eppendorf® tubes at room temperature. The gold layer and spikes of ICGNPs increased the surface areas. The ratio of the surface area is 0.76 (IONPs/ICGNPs). The comparative sensitivity and specificity of the IONP-based and the ICGNP-based methods to detect Salmonella were determined. The ICGNP method shows the limit of detection is 32 Salmonella per mL. The ICGNPs had an 83.3% sensitivity and a 92.9% specificity value for the presence and detection of Salmonella. The IONP method resulted in a limit of detection of 150 Salmonella per mL, and a 66.7% sensitivity and 83.3% specificity for the presence and detection of Salmonella. The higher surface area of ICGNPs increases the efficiency of detection. The monitoring of Salmonella can thus be achieved by a rapid magnetic fluorescent assay using a smartphone for image capture and analyze, providing quantitative results. The findings from the present study would help to detect Salmonella rapidly in water. It can improve the microbial quality of water and food safety due to the presence of Salmonella in the water environment.

17.
Nanoscale ; 14(33): 12174-12182, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35968905

RESUMEN

Chiral semiconductor quantum dots have recently received broad attention due to their promising application in several fields such as sensing and photonics. The extensive work in the last few years was focused on the observation of the chiroptical properties in binary Cd based systems. Herein, we report on the first evidence of ligand-induced chirality in silver indium sulfide semiconductor quantum dots. Ternary disulfide quantum dots are of great interest due to their remarkable optical properties and low toxicity. Non-stoichiometric silver indium sulfide quantum dots were produced via a room temperature coprecipitation in water, in the presence of cysteine as a capping agent. The obtained nanocrystals show a notable photoluminescence quantum yield of 0.24 in water dispersions. Several critical aspects of the nanocrystal growth and chemico-physical characterization, and the optimisation of the surface passivation by the chiral ligand in order to optimize the nanoparticle chirality are thoroughly investigated. Optical spectroscopy methods such as circular dichroism and luminescence as well as nuclear magnetic resonance techniques are exploited to analyze the coordination processes leading to the formation of the ligand-nanocrystal chiral interface. This study highlights the dynamic nature of the interaction between the nanocrystal surface and the chiral ligand and clarifies some fundamental aspects for the transfer and optimization of the chiroptical properties.

18.
Sensors (Basel) ; 22(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35891020

RESUMEN

The development of a reusable and low-cost urine glucose sensor can benefit the screening and control of diabetes mellitus. This study focused on the feasibility of employing microbial fuel cells (MFC) as a selective glucose sensor for continuous monitoring of glucose levels in human urine. Using MFC technology, a novel cylinder sensor (CS) was developed. It had a quick response time (100 s), a large detection range (0.3-5 mM), and excellent accuracy. More importantly, the CS could last for up to 5 months. The selectivity of the CS was validated by both synthetic and actual diabetes-negative urine samples. It was found that the CS's selectivity could be significantly enhanced by adjusting the concentration of the culture's organic matter. The CS results were comparable to those of a commercial glucose meter (recovery ranged from 93.6% to 127.9%) when the diabetes-positive urine samples were tested. Due to the multiple advantages of high stability, low cost, and high sensitivity over urine test strips, the CS provides a novel and reliable approach for continuous monitoring of urine glucose, which will benefit diabetes assessment and control.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 1 , Automonitorización de la Glucosa Sanguínea/métodos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucosa , Humanos , Sistemas de Infusión de Insulina
19.
Sci Rep ; 12(1): 5787, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388059

RESUMEN

Copper based ternary and quaternary quantum confined nanostructures have attracted huge attention over recent years due to their potential applications in photonics, photovoltaics, imaging, sensing and other areas. However, anisotropic nanoheterostructures of this type are still poorly explored to date, despite numerous predictions of the distinctive optical properties of these highly fluorescent heavy metal free nanostructures. Here, we report new fluorescent multicomponent Cu-In-(Zn)-S/ZnS nanoheterostructures with a unique anisotropic "ice-cream cone" like morphology. These nanostructures have been prepared with a seeded growth technique and exhibit distinct photophysical properties with maximum emission in the visible range (≈ 640 nm) and long photoluminescence lifetimes (τaverage ≥ 300 ns). In depth time interval studies have been carried out to better understand the step by step growth mechanism of this distinct "ice-cream cone" like geometry. We have demonstrated that the crystal structure evolution from the zinc blende Cu-In-S core to the wurtzite "ice cream cone" like Cu-In-(Zn)-S/ZnS nanocrystals plays a key role in the origin of this morphology. This research opens new possibilities to produce unique fluorescent Cu-based multicomponent anisotropic heteronanostructures, while also offering a distinctive insight into the design of bespoke nanostructures, which could find a range of potential applications.

20.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159818

RESUMEN

In recent years, nanotechnology-based approaches have resulted in the development of new alternative sustainable technologies for water purification. Two-dimensional (2D) nanomaterials are an emerging class of materials for nanofiltration membranes. In this work, we report the production, characterisation and testing of a promising nanofiltration membrane made from water-exfoliated boron nitride (BN) 2D nanosheets. The membranes have been tested for water purification and removal of typical water-soluble dyes such as methyl orange, methylene blue and Evans blue, with the water-exfoliated BN membranes achieving retention values close to 100%. In addition, we compared the performance of membranes made from water-exfoliated BN with those produced from BN using sonication-assisted liquid exfoliation in selected organic solvents such as 2-propanol and N-methyl-2-pyrrolidone. It was found that membranes from the water-exfoliated BN showed superior performance. We believe this research opens up a unique opportunity for the development of new high-performance environmentally friendly membranes for nanofiltration and new sustainable separation technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA