Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(24): 17396-17404, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860930

RESUMEN

This study presents simulations of temperature-programmed desorption (TPD) profiles using desorption energy data from density functional theory (DFT) calculations. We apply this method to investigate the desorption of oxygen (O2) from IrO2(110) to gain insight into the kinetics of oxygen coupling and desorption, important elementary steps in the oxygen evolution reaction (OER). Initially, we confirm the thermodynamically stable adsorption site for oxygen in the pristine IrO2(110) as IrCUS, even with a high oxygen coverage. We successfully simulate TPD for O2 desorption, achieving good agreement with experimental TPD data for different initial oxygen exposures when including more than one adsorption site. We identify a new adsorption site, related to the formation of steps on IrO2(110)(IrCUS-step-0.5), that is essential for reproducing the experimental TPD. Our findings suggest that the observed TPD peaks are the result of different adsorption sites on the surface, rather than solely a lateral interactions effect. This work provides insight into the behavior of oxygen adsorption on IrO2, with implications for understanding surface reactivity and catalytic processes involving this material.

2.
ACS Nano ; 16(4): 6334-6348, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35377139

RESUMEN

The development of inexpensive and abundant catalysts with high activity, selectivity, and stability for the oxygen reduction reaction (ORR) is imperative for the widespread implementation of fuel cell devices. Herein, we present a combined theoretical-experimental approach to discover and design first-row transition metal antimonates as excellent electrocatalytic materials for the ORR. Theoretically, we identify first-row transition metal antimonates─MSb2O6, where M = Mn, Fe, Co, and Ni─as nonprecious metal catalysts with good oxygen binding energetics, conductivity, thermodynamic phase stability, and aqueous stability. Among the considered antimonates, MnSb2O6 shows the highest theoretical ORR activity based on the 4e- ORR kinetic volcano. Experimentally, nanoparticulate transition metal antimonate catalysts are found to have a minimum of a 2.5-fold enhancement in intrinsic mass activity (on transition metal mass basis) relative to the corresponding transition metal oxide at 0.7 V vs RHE in 0.1 M KOH. MnSb2O6 is the most active catalyst under these conditions, with a 3.5-fold enhancement on a per Mn mass activity basis and 25-fold enhancement on a surface area basis over its antimony-free counterpart. Electrocatalytic and material stability are demonstrated over a 5 h chronopotentiometry experiment in the stability window identified by theoretical Pourbaix analysis. This study further highlights the stable and electrically conductive antimonate structure as a framework to tune the activity and selectivity of nonprecious metal oxide active sites for ORR catalysis.

3.
Commun Chem ; 5(1): 20, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36697647

RESUMEN

Platinum is an important material with applications in oxygen and hydrogen electrocatalysis. To better understand how its activity can be modulated through electrolyte effects in the double layer microenvironment, herein we investigate the effects of different acid anions on platinum for the oxygen reduction/evolution reaction (ORR/OER) and hydrogen evolution/oxidation reaction (HER/HOR) in pH 1 electrolytes. Experimentally, we see the ORR activity trend of HClO4 > HNO3 > H2SO4, and the OER activity trend of HClO4 [Formula: see text] HNO3 ∼ H2SO4. HER/HOR performance is similar across all three electrolytes. Notably, we demonstrate that ORR performance can be improved 4-fold in nitric acid compared to in sulfuric acid. Assessing the potential-dependent role of relative anion competitive adsorption with density functional theory, we calculate unfavorable adsorption on Pt(111) for all the anions at HER/HOR conditions while under ORR/OER conditions [Formula: see text] binds the weakest followed by [Formula: see text] and [Formula: see text]. Our combined experimental-theoretical work highlights the importance of understanding the role of anions across a large potential range and reveals nitrate-like electrolyte microenvironments as interesting possible sulfonate alternatives to mitigate the catalyst poisoning effects of polymer membranes/ionomers in electrochemical systems. These findings help inform rational design approaches to further enhance catalyst activity via microenvironment engineering.

4.
Nat Commun ; 12(1): 620, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504815

RESUMEN

Alloying is a powerful tool that can improve the electrocatalytic performance and viability of diverse electrochemical renewable energy technologies. Herein, we enhance the activity of Pd-based electrocatalysts via Ag-Pd alloying while simultaneously lowering precious metal content in a broad-range compositional study focusing on highly comparable Ag-Pd thin films synthesized systematically via electron-beam physical vapor co-deposition. Cyclic voltammetry in 0.1 M KOH shows enhancements across a wide range of alloys; even slight alloying with Ag (e.g. Ag0.1Pd0.9) leads to intrinsic activity enhancements up to 5-fold at 0.9 V vs. RHE compared to pure Pd. Based on density functional theory and x-ray absorption, we hypothesize that these enhancements arise mainly from ligand effects that optimize adsorbate-metal binding energies with enhanced Ag-Pd hybridization. This work shows the versatility of coupled experimental-theoretical methods in designing materials with specific and tunable properties and aids the development of highly active electrocatalysts with decreased precious-metal content.

5.
ACS Appl Mater Interfaces ; 12(45): 50550-50565, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33111522

RESUMEN

Porous organic polymers (POPs) constructed through covalent bonds have raised tremendous research interest because of their suitability to develop robust catalysts and their successful production with improved efficiency. In this work, we have designed and explored the properties and catalytic activity of a template-free-constructed, hydroxy (-OH) group-enriched porous organic polymer (Ph-POP) bearing functional Pd nanoparticles (Pd-NPs) by one-pot condensation of phloroglucinol (1,3,5-trihydroxybenzene) and terephthalaldehyde followed by solid-phase reduction with H2. The encapsulated Pd-NPs rested within well-defined POP nanocages and remained undisturbed from aggregation and leaching. This polymer hybrid nanocage Pd@Ph-POP is found to enable efficient liquid-phase hydrodeoxygenation (HDO) of acetophenone (AP) with high selectivity (99%) of ethylbenzene (EB) and better activity than its Pd@Al2O3 counterpart. Our investigation demonstrates a facile, scalable, catalyst-template-free methodology for developing novel porous organic polymer catalysts and next-generation efficient greener chemical processes from platform molecules to produce value-added chemicals. With the aid of comprehensive in situ ATR-IR spectroscopy experiments, it is suggested that EB can be more easily desorbed in a solution, reflecting from the much weaker but better-resolved signal at 1494 cm-1 in Pd@Ph-POP compared to that in Pd@Al2O3, which is the key determining factor in favoring an efficient catalytic mechanism. Density functional theory (DFT) calculations were performed to illustrate the detailed reaction network and explain the high catalytic activity observed for the fabricated Pd@Ph-POP catalyst in the HDO conversion of AP to EB. All of the hydrogenation routes, including direct hydrogenation by surface hydrogen, hydrogen transfer, and the keto-enol pathway, are evaluated, providing insights into the experimental observations. The presence of phenolic hydroxyl groups in the Ph-POP frame structure facilitates the hydrogen-shuttling mechanism for dehydration from the intermediate phenylethanol, which was identified as a crucial step for the formation of the final product ethylbenzene. Besides, weaker binding of the desired product ethylbenzene and lower coverage of surface hydrogen atoms on Pd@Ph-POP both contributed to inhibiting the overhydrogenation reaction and explained well the high yield of EB produced during the HDO conversion of AP on Pd@Ph-POP in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA