Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biomater Transl ; 5(1): 33-45, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220664

RESUMEN

Drug therapy towards tumours often causes adverse effects because of their non-specific nature. Membrane-coated technology and membrane-coated nanoparticles provide an advanced and promising platform of targeted and safe delivery. By camouflaging the nanoparticles with natural derived or artificially modified cell membranes, the nano-payloads are bestowed with properties from cell membranes such as longer circulation, tumour or inflammation-targeting, immune stimulation, augmenting the performance of traditional therapeutics. In this review, we review the development of membrane coating technology, and summarise the technical details, physicochemical properties, and research status of membrane-coated nanoparticles from different sources in tumour treatment. Finally, we also look forward to the prospects and challenges of transforming membrane coating technology from experiment into clinical use. Taken together, membrane-coated nanoparticles are bound to become one of the most potential anti-tumour strategies in the future.

2.
J Phys Chem Lett ; : 9144-9152, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39208268

RESUMEN

Strengthening the interaction between the target and SERS substrate is crucial for sensitive SERS detection; we thereby explored the molecular structure-dependent SERS sensitivity for negatively charged targets on the positively charged SERS substrate. Both experimental and theoretical studies confirm that the SERS sensitivity is determined by the electrostatic interaction between the target and linker. This interaction is not only manipulated by the protonation capacity of the linker and its surface adsorption configuration and geometry but also significantly determined by the target's structure, encompassing electronegativity and the number of interaction sites. The optimized interaction leads to a marked improvement in detection sensitivity of up to 1-3 orders of magnitude. The interaction mechanism revealed in this work not only provides theoretical guidance and technical support for electrostatically driven SERS detection but also offers a conceptual framework that can be extended to various SERS detections based on diverse surface forces.

3.
Angew Chem Int Ed Engl ; : e202412173, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39205422

RESUMEN

Aqueous Zn-ion batteries (AZIBs) are promising for the next-generation large-scale energy storage. However, the Zn anode remains facing challenges. Here, we report a cyclodextrin polymer (P-CD) to construct quasi-single ion conductor for coating and protecting Zn anodes. The P-CD coating layer inhibited the corrosion of Zn anode and prevented the side reaction of metal anodes. More important is that the cyclodextrin units enabled the trapping of anions through host-guest interactions and hydrogen bonds, forming a quasi-single ion conductor that elevated the Zn ion transference number (from 0.31 to 0.68), suppressed the formation of space charge regions and hence stabilized the plating/striping of Zn ions. As a result, the Zn//Zn symmetric cells coated with P-CD achieved a 70.6 times improvement in cycle life at high current densities of 10 mA cm-2 with 10 mAh cm-2. Importantly, the Zn//K1.1V3O8 (KVO) full-cells with high mass loading of cathode materials and low N/P ratio of 1.46 reached the capacity retention of 94.5% after 1000 cycles at 10 A g-1; while the cell without coating failed only after 230 cycles. These results provide novel perspective into the control of solid-electrolyte interfaces for stabilizing Zn anode and offer a practical strategy to improve AZIBs.

4.
Animals (Basel) ; 14(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891750

RESUMEN

Hatchery rearing significantly influences the phenotypic development of fish, with potential adverse effects for the post-release performance of hatchery-reared individuals in natural environments, especially when targeted for stock enhancement. To assess the suitability of releasing hatchery-reared fish, a comprehensive understanding of the phenotypic effects of captive rearing, through comparisons with their wild conspecifics, is essential. In this study, we investigated the divergence in body coloration between wild and hatchery-reared marbled rockfish Sebastiscus marmoratus. We examined the selection preferences for different light colors and assessed the impact of different ambient light colors on the morphological color-changing ability of juvenile marbled rockfish. Our findings revealed significant differences in body color between wild and hatchery-reared marbled rockfish. The hue and saturation values of wild marbled rockfish were significantly higher than those of their hatchery-reared counterparts, indicative of deeper and more vibrant body coloration in the wild population. Following a ten-day rearing period under various light color environments, the color of wild marbled rockfish remained relatively unchanged. In contrast, hatchery-reared marbled rockfish tended to change their color, albeit not reaching wild-like coloration. Light color preference tests demonstrated that wild juvenile marbled rockfish exhibited a preference for a red-light environment, while hatchery-reared individuals showed a similar but weaker response. Both wild and hatchery-reared marbled rockfish displayed notable negative phototaxis in the presence of yellow and blue ambient light. These results highlight the impact of hatchery rearing conditions on the body color and morphological color-changing ability, and provide insight into light color selection preferences of marbled rockfish. To mitigate the divergence in phenotypic development and produce more wild-like fish for stocking purposes, modifications to the hatchery environment, such as the regulation of ambient light color, should be considered.

5.
ACS Appl Mater Interfaces ; 16(25): 32411-32424, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38865596

RESUMEN

Introducing auxetic metamaterials into stretchable electronics shows promising prospects for enhancing the performance and innovating the functionalities of various devices, such as stretchable strain sensors. Nevertheless, most existing auxetics fail to meet the requirement of stretchable electronics, which typically include high mechanical flexibility and stable Poisson's ratio over large deformations. Moreover, despite being highly advantageous for application in diverse load-bearing conditions, achieving tunability of J-shaped stress-strain response independent of negative Poisson's ratio remains a significant challenge. This paper introduces a class of hybrid-microstructure-based soft network materials (HMSNMs) consisting of different types of microstructures along the loading and transverse directions. The J-shaped stress-strain curve and nonlinear Poisson's ratio for HMSNMs can be tuned independently of each other. The HMSNM provides much higher strength than the corresponding existing metamaterial while offering a nearly stable negative Poisson's ratio over large strains. Both mechanical properties under infinitesimal and large deformations can be well-tuned by geometric parameters. Fascinating functionalities such as shape programming and stress regulation are achieved by integrating a set of HMSNMs in series/parallel configurations. A stretchable LED-integrated display capable of displaying dynamic images without distortion under uniaxial stretching serves as a demonstrative application.

6.
Rev Neurosci ; 35(6): 697-707, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38738975

RESUMEN

Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.


Asunto(s)
Encéfalo , Función Ejecutiva , Obesidad , Sobrepeso , Recompensa , Humanos , Función Ejecutiva/fisiología , Obesidad/fisiopatología , Obesidad/psicología , Sobrepeso/fisiopatología , Encéfalo/fisiopatología , Red Nerviosa/fisiopatología , Imagen por Resonancia Magnética
7.
BMC Cardiovasc Disord ; 24(1): 234, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702615

RESUMEN

BACKGROUND: Insulin resistance (IR) can lead to cellular metabolic disorders, activation of oxidative stress, and endothelial dysfunction, contributing to in-stent restenosis (ISR). The triglyceride-glucose index (TyG index), a new indicator reflecting IR, is extensively researched in the cardiovascular field. This study, through a meta-analysis, aimed to utilize a larger combined sample size and thereby enhance the overall test efficacy to explore the TyG index-ISR relationship. METHODS: A thorough search was conducted in the PubMed, EMBASE, Web of Science, and Cochrane Library databases to find original papers and their references published between 1990 and January 2024. This search included both prospective and retrospective studies detailing the correlation between the TyG index and ISR in individuals with coronary heart disease (CHD). OUTCOMES: The five included articles comprised 3,912 participants, and the odds ratio (OR) extracted from each study was combined using the Inverse Variance method. Results showed that, in the context of CHD patients, each incremental unit in the TyG index, when treated as a continuous variable, corresponded to a 42% elevation in ISR risk (95% CI 1.26-1.59, I²=13%, p < 0.005). When analyzing the TyG index categorically, the results revealed a higher ISR risk in the highest TyG index group compared to the lowest group (OR: 1.69, 95% CI 1.32-2.17, I²=0). Additionally, in patients with chronic coronary syndrome (CCS), each unit increase in the TyG index, the risk of ISR in patients increased by 37% (95% CI 1.19-1.57, I²=0%, p < 0.005). This correlation was also observable in acute coronary syndrome (ACS) patients (OR:1.48, 95% CI 1.19-1.85, I²=0, p < 0.005). CONCLUSIONS: The TyG index, an economical and precise surrogate for IR, is significantly linked with ISR. Furthermore, this correlation is unaffected by the type of coronary heart disease.


Asunto(s)
Biomarcadores , Glucemia , Enfermedad de la Arteria Coronaria , Reestenosis Coronaria , Resistencia a la Insulina , Intervención Coronaria Percutánea , Stents , Triglicéridos , Humanos , Biomarcadores/sangre , Glucemia/metabolismo , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/diagnóstico , Reestenosis Coronaria/sangre , Reestenosis Coronaria/etiología , Reestenosis Coronaria/diagnóstico , Reestenosis Coronaria/diagnóstico por imagen , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/instrumentación , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Resultado del Tratamiento , Triglicéridos/sangre
8.
Synth Syst Biotechnol ; 9(3): 577-585, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38708056

RESUMEN

Strengthening the expression level of integrated genes on the genome is crucial for consistently expressing key enzymes in microbial cell factories for efficient bioproduction in synthetic biology. In comparison to plasmid-based multi-copy expression, the utilization of chromosomal multi-copy genes offers increased stability of expression level, diminishes the metabolic burden on host cells, and enhances overall genetic stability. In this study, we developed the "BacAmp", a stabilized gene integration expression and copy number amplification system for high-level expression in Bacillus subtilis, which was achieved by employing a combination of repressor and non-natural amino acids (ncAA)-dependent expression system to create a reversible switch to control the key gene recA for homologous recombination. When the reversible switch is turned on, genome editing and gene amplification can be achieved. Subsequently, the reversible switch was turned off therefore stabilizing the gene copy number. The stabilized gene amplification system marked by green fluorescent protein, achieved a 3-fold increase in gene expression by gene amplification and maintained the average gene copy number at 10 after 110 generations. When we implemented the gene amplification system for the regulation of N-acetylneuraminic acid (NeuAc) synthesis, the copy number of the critical gene increased to an average of 7.7, which yielded a 1.3-fold NeuAc titer. Our research provides a new avenue for gene expression in synthetic biology and can be applied in metabolic engineering in B. subtilis.

9.
Adv Biol (Weinh) ; 8(6): e2300635, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38655702

RESUMEN

Obesity is a significant global health concern linked to excessive dietary energy intake. This research focuses on the mammalian hairless protein (HR), known for its role in skin and hair function, and its impact on metabolism. Examining male wild-type (Hr+/+) and Hr null (Hr-/-) mice over a 14-week normal chow diet (NCD) or high-fat diet (HFD) intervention. This study reveals that HR deficiency exhibited a protective effect against HFD-induced obesity and insulin resistance. This protective effect is attributed to increased energy expenditure in Hr-/- mice. Moreover, the brown adipose tissue (BAT) of Hr-/- mice displays elevated levels of the thermogenic protein, uncoupling protein 1 (Ucp1), and its key transcriptional regulators (PPARγ and PGC1α), compared to Hr+/+ mice. In summary, the findings underscore the protective role of HR deficiency in countering HFD-induced adiposity by enhancing insulin sensitivity, raising energy expenditure, and augmenting thermogenic factors in BAT. Further exploration of HR metabolic regulation holds promise for potential therapeutic targets in addressing obesity-related metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Dieta Alta en Grasa , Metabolismo Energético , Resistencia a la Insulina , Obesidad , Animales , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Termogénesis/genética , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/deficiencia
10.
IEEE Trans Pattern Anal Mach Intell ; 46(9): 6355-6366, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38507384

RESUMEN

This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images. Many previous works have shown impressive reconstruction results on textured objects, but they still have difficulty in handling low-textured planar regions, which are common in indoor scenes. An approach to solving this issue is to incorporate planar constraints into the depth map estimation in multi-view stereo-based methods, but the per-view plane estimation and depth optimization lack both efficiency and multi-view consistency. In this work, we show that the planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods. Specifically, we use an MLP network to represent the signed distance function as the scene geometry. Based on the Manhattan-world assumption and the Atlanta-world assumption, planar constraints are employed to regularize the geometry in floor and wall regions predicted by a 2D semantic segmentation network. To resolve the inaccurate segmentation, we encode the semantics of 3D points with another MLP and design a novel loss that jointly optimizes the scene geometry and semantics in 3D space. Experiments on ScanNet and 7-Scenes datasets show that the proposed method outperforms previous methods by a large margin on 3D reconstruction quality.

11.
ACS Nano ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315123

RESUMEN

Rapid advancements in human-machine interaction and voice biometrics impose desirability on soft mechanical sensors for sensing complex dynamic signals. However, existing soft mechanical sensors mainly concern quasi-static signals such as pressure and pulsation for health monitoring, limiting their applications in emerging wearable electronics. Here, we propose a hydrogel-based soft mechanical sensor that enables recording a wide range of dynamic signals relevant to humans by combining a preloading design strategy and iontronic sensing mechanism. The proposed sensor offers a two-orders-of-magnitude larger working bandwidth (up to 1000 Hz) than most of the reported soft mechanical sensors and meanwhile provides a high sensitivity (-23 dB) that surpasses the common commercial microphone. The amplitude-frequency characteristic of the proposed sensor can be precisely tuned to meet the desired requirement by adjusting the preloads and the parameters of the microstructured hydrogel. The sensor is capable of recording instrumental sounds with high fidelity from simple pure tones to melodic songs. Demonstration of a skin-mountable sensor used for human-voice-based remote control of a toy car shows great potential for applications in the voice user interface of human-machine interactions.

12.
ChemSusChem ; 17(6): e202301586, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38168109

RESUMEN

Organic electrode materials (OEMs) have been well developed in recent years. However, the practical applications of OEMs have not been paid sufficient attention. The concept here focused on one of the essential aspects for practical applications, i. e., high mass loading of active materials. This paper summarizes the challenges posed by high-mass loading of active materials in organic batteries and discusses the possible solutions in terms of organic electrode materials, conductive additives, electrode structures, and electrolytes or battery systems. We hope this concept can stimulate more attention to practical applications of organic batteries towards industry from lab.

13.
Neurotherapeutics ; 21(1): e00309, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241164

RESUMEN

The primary sensory neurons of the dorsal root ganglia (DRG) are subject to transcriptional alterations following peripheral nerve injury. These alterations are believed to play a pivotal role in the genesis of neuropathic pain. Alternative RNA splicing is a process that generates multiple transcript variants from a single gene, significantly contributing to the complexity of the transcriptome. However, little is known about the functional significance and control of alternative RNA splicing in injured DRG after spinal nerve ligation (SNL). In our study, we conducted a comprehensive transcriptome profiling and bioinformatic analysis to approach and identified a neuron-specific isoform of an RNA splicing regulator, RNA-binding Fox1 (Rbfox1, also known as A2BP1), as a crucial regulator of alternative RNA splicing in injured DRG after SNL. Notably, Rbfox1 expression is markedly reduced in injured DRG following peripheral nerve injury. Restoring this reduction effectively mitigates nociceptive hypersensitivity. Conversely, mimicking the downregulation of Rbfox1 expression generates neuropathic pain symptoms. Mechanistically, we uncovered that Rbfox1 may be a key factor influencing alternative RNA splicing of neuron-glial related cell adhesion molecule (NrCAM), a key neuronal cell adhesion molecule. In injured DRG after SNL, the downregulation of Rbfox1amplifies the insertion of exon 10 in Nrcam transcripts, leading to an increase in long Nrcam variants (L-Nrcam) and a corresponding decrease in short Nrcam variants (S-Nrcam) within injured DRG. In summary, our study supports the essential role of Rbfox1 in neuropathic pain within DRG, probably via the regulation of Nrcam splicing. These findings suggest that Rbfox1 could be a potential target for neuropathic pain therapy.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Empalme Alternativo , Neuralgia/genética , Neuralgia/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglios Espinales/metabolismo
15.
Appl Opt ; 62(31): 8381-8389, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037943

RESUMEN

We numerically investigate two Fano resonances with high Q-factors based on a permittivity-asymmetric metastructure composed of two pea-shaped cylinders. By employing different materials to break the permittivity-asymmetry, the quasi-bound state of the continuum spectrum (BIC) resonance at 982.87 nm is excited, showing the Q-factor as high as 8183.7. The electromagnetic fields and vectors are analyzed by using the finite-difference time-domain (FDTD) method, and the resonance modes are identified as magnetic dipole (MD) responses and MDs by multipole decomposition in Cartesian coordinates, displaying that the light is confined within a pea-shaped cylinder to achieve localized field enhancement. In addition, the sensing performances of the metastructure are evaluated, and an optical refractive index sensor can be obtained with the sensitivity of 152 nm/RIU and maximum figure of merit (FOM) of 832.6. This proposed structure offers a new, to the best of our knowledge, way to achieve Fano resonant excitation on all-dielectric metastructures and can be used in nonlinear optics, biosensing, optical switches, and lasers.

16.
J Fish Biol ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009685

RESUMEN

Assessing the nutritional status and identifying major causes of mortality in larvae experiencing varying degrees of starvation are crucial for establishing appropriate feeding protocols and enhancing the welfare of hatchery-reared fish. The black rockfish Sebastes schlegelii is an important species in aquaculture and stock enhancement efforts in China, Japan, and Korea. This study aimed to identify optimal diagnostic morphometric indicators of starvation in newly hatched (0-6 days post-hatch, DPH) and postlarval stages (27-37 DPH) of this valuable fish species through histological analyses. Our findings revealed that certain morphometric parameters, including body length, the ratios of eye diameter to head height, body height to body length, and abdomen height to body height, exhibit sensitivity to starvation during both larval and postlarval stages. Particularly, the ratios of body height to body length and abdomen height to body height emerged as the most sensitive morphometric indicators of starvation. Histological examinations of the digestive system revealed rapid alterations in the morphology of hepatic parenchymal cells, accompanied by a significant decrease in the number of lipid cells in the liver during episodes of food deprivation. Starvation induced cellular degeneration in the digestive organs, manifested by reduced heights of epithelial cells and mucosal layers in the intestine, oesophagus, and stomach, along with degeneration and separation of muscle fibers. Among these variables, the height of the intestinal submucosa and muscle layer emerged as the most sensitive indicators reflecting nutritional conditions in newly hatched larvae. In contrast, the height of intestinal striated borders and mucosal folds proved to be the most sensitive indicators in the postlarval stage. Furthermore, the height of intestinal epithelial cells and the number of lipid vacuoles in enterocytes exhibited high sensitivity to food deprivation in both newly hatched larvae and postlarvae. These findings underscore the varying resilience of fish to starvation during different developmental phases and highlight the utility of morphological sensitivity characteristics as reliable diagnostic indices for assessing nutritional status in relation to starvation or suboptimal feeding during the early developmental stages of black rockfish in hatchery-reared processes.

17.
ACS Appl Mater Interfaces ; 15(40): 47327-47337, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769210

RESUMEN

Flexible capacitive pressure sensors with high sensitivity over a wide pressure range are highly anticipated in the fields of tactile perception and physiological signal monitoring. However, despite the introduction of microstructures on the electrolyte layer, the deformability is still limited due to the size limitation of the microstructures, making it difficult to significantly improve the sensitivity of iontronic capacitive pressure sensors (ICPSs). Here, we propose an innovative strategy of combining carbon nanotubes (CNTs) topological networks and ionic hydrogel micropyramid array microstructures that can significantly enhance the sensitivity of flexible ICPSs for ultrasensitive pressure detection. Compared with other previously reported ICPSs, the sensor developed in this work exhibits an unprecedented sensitivity (Smin > 1050 kPa-1) and a high linear response (R2 > 0.99) in a wide pressure range (0.03-28 kPa) enabled by CNT percolation networks inside the microstructred electrolyte layer. This ultrasensitive and flexible ICPS also can effectively detect pressure from a variety of sources, including sound waves, lightweight objects, and tiny physiological signals, such as pulse rate and heartbeat. This work provides a general strategy to achieve an ICPS with both broader pressure-response range and higher sensitivity, which provides a stable and efficient way for a low-cost, scalable sensor for sensitive tactile sensing in human-computer interaction applications.

18.
Science ; 381(6659): 790-793, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590350

RESUMEN

Strange metals-ubiquitous in correlated quantum materials-transport electrical charge at low temperatures but not by the individual electronic quasiparticle excitations, which carry charge in ordinary metals. In this work, we consider two-dimensional metals of fermions coupled to quantum critical scalars, the latter representing order parameters or fractionalized particles. We show that at low temperatures (T), such metals generically exhibit strange metal behavior with a T-linear resistivity arising from spatially random fluctuations in the fermion-scalar Yukawa couplings about a nonzero spatial average. We also find a T ln(1/T) specific heat and a rationale for the Planckian bound on the transport scattering time. These results are in agreement with observations and are obtained in the large N expansion of an ensemble of critical metals with N fermion flavors.

19.
Nat Chem Biol ; 19(12): 1504-1512, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37443393

RESUMEN

Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Saccharomyces cerevisiae , ADN Bacteriano , ADN Polimerasa Dirigida por ADN/metabolismo , Plásmidos/genética , Saccharomyces cerevisiae/genética , Replicación del ADN , Bacterias/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo
20.
Animals (Basel) ; 13(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37443928

RESUMEN

A widely used approach to restoring marine fishery resources is stock enhancement using hatchery-reared fish. However, artificial rearing environments, which are often lacking in enrichment, may negatively affect the cognition, welfare, and adaptive capacity to new environments of juvenile fish, thereby leading to low post-release survival rates. This study examined the effects of habitat and social enrichment on the growth performance and cognitive ability of Sebastes schlegelii. Following seven weeks of environmental enrichment, a T-maze experiment was conducted, and the telencephalon and visceral mass of the fish were sampled to measure the growth (growth hormone: GH; insulin-like growth factor-1: IGF-1; and somatostatin: SS) and cognitive abilities (brain-derived neurotrophic factor: BDNF; and nerve growth factor: NGF)-related indicator levels. The results indicated that, although the final body length, final body weight, and specific growth rate of both enrichment groups were lower than those of the control group, both methods of enrichment had a positive impact on growth-related factors (increased GH, increased IGF-1, and decreased SS). The enrichment groups demonstrated a stronger learning ability in the T-maze test, and the levels of BDNF and NGF in the telencephalon were significantly higher in the enrichment groups than those in the control group. Additionally, there was a significant interaction between the two enrichment methods on the NGF level. This study confirms that a more complex and enriching environment is beneficial for cultivating the cognitive abilities of cultured juvenile S. schlegelii, and the result can provide a reference for the improvement of the stock enhancement of this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA