Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Med Imaging ; 24(1): 148, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886638

RESUMEN

BACKGROUND: Preoperative discrimination between non-muscle-invasive bladder cancer (NMIBC) and the muscle invasive bladder cancer (MIBC) is a determinant of management. The purpose of this research is to employ radiomics to evaluate the diagnostic value in determining muscle invasiveness of compressed sensing (CS) accelerated 3D T2-weighted-SPACE sequence with high resolution and short acquisition time. METHODS: This prospective study involved 108 participants who underwent preoperative 3D-CS-T2-weighted-SPACE, 3D-T2-weighted-SPACE and T2-weighted sequences. The cohort was divided into training and validation cohorts in a 7:3 ratio. In the training cohort, a Rad-score was constructed based on radiomic features selected by intraclass correlation coefficients, pearson correlation coefficient and least absolute shrinkage and selection operator . Multivariate logistic regression was used to develop a nomogram combined radiomics and clinical indices. In the validation cohort, the performances of the models were evaluated by ROC, calibration, and decision curves. RESULTS: In the validation cohort, the area under ROC curve of 3D-CS-T2-weighted-SPACE, 3D-T2-weighted-SPACE and T2-weighted models were 0.87(95% confidence interval (CI):0.73-1.00), 0.79(95%CI:0.63-0.96) and 0.77(95%CI:0.60-0.93), respectively. The differences in signal-to-noise ratio and contrast-to-noise ratio between 3D-CS-T2-weighted-SPACE and 3D-T2-weighted-SPACE sequences were not statistically significant(p > 0.05). While the clinical model composed of three clinical indices was 0.74(95%CI:0.55-0.94) and the radiomics-clinical nomogram model was 0.88(95%CI:0.75-1.00). The calibration curves confirmed high goodness of fit, and the decision curve also showed that the radiomics model and combined nomogram model yielded higher net benefits than the clinical model. CONCLUSION: The radiomics model based on compressed sensing 3D T2WI sequence, which was acquired within a shorter acquisition time, showed superior diagnostic efficacy in muscle invasion of bladder cancer. Additionally, the nomogram model could enhance the diagnostic performance.


Asunto(s)
Imagenología Tridimensional , Invasividad Neoplásica , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Masculino , Femenino , Persona de Mediana Edad , Invasividad Neoplásica/diagnóstico por imagen , Estudios Prospectivos , Imagenología Tridimensional/métodos , Anciano , Imagen por Resonancia Magnética/métodos , Curva ROC , Nomogramas , Radiómica
2.
Insights Imaging ; 15(1): 138, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853200

RESUMEN

PURPOSE: To investigate the performance of histogram features of non-Gaussian diffusion metrics for diagnosing muscle invasion and histological grade in bladder cancer (BCa). METHODS: Patients were prospectively allocated to MR scanner1 (training cohort) or MR2 (testing cohort) for conventional diffusion-weighted imaging (DWIconv) and multi-b-value DWI. Metrics of continuous time random walk (CTRW), diffusion kurtosis imaging (DKI), fractional-order calculus (FROC), intravoxel incoherent motion (IVIM), and stretched exponential model (SEM) were simultaneously calculated using multi-b-value DWI. Whole-tumor histogram features were extracted from DWIconv and non-Gaussian diffusion metrics for logistic regression analysis to develop diffusion models diagnosing muscle invasion and histological grade. The models' performances were quantified by area under the receiver operating characteristic curve (AUC). RESULTS: MR1 included 267 pathologically-confirmed BCa patients (median age, 67 years [IQR, 46-82], 222 men) and MR2 included 83 (median age, 65 years [IQR, 31-82], 73 men). For discriminating muscle invasion, CTRW achieved the highest testing AUC of 0.915, higher than DWIconv's 0.805 (p = 0.014), and similar to the combined diffusion model's AUC of 0.885 (p = 0.076). For differentiating histological grade of non-muscle-invasion bladder cancer, IVIM outperformed a testing AUC of 0.897, higher than DWIconv's 0.694 (p = 0.020), and similar to the combined diffusion model's AUC of 0.917 (p = 0.650). In both tasks, DKI, FROC, and SEM failed to show diagnostic superiority over DWIconv (p > 0.05). CONCLUSION: CTRW and IVIM are two potential non-Gaussian diffusion models to improve the MRI application in assessing muscle invasion and histological grade of BCa, respectively. CRITICAL RELEVANCE STATEMENT: Our study validates non-Gaussian diffusion imaging as a reliable, non-invasive technique for early assessment of muscle invasion and histological grade in BCa, enhancing accuracy in diagnosis and improving MRI application in BCa diagnostic procedures. KEY POINTS: Muscular invasion largely determines bladder salvageability in bladder cancer patients. Evaluated non-Gaussian diffusion metrics surpassed DWIconv in BCa muscle invasion and histological grade diagnosis. Non-Gaussian diffusion imaging improved MRI application in preoperative diagnosis of BCa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA