Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 648: 889-897, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327631

RESUMEN

The development of photocatalytic reduction of CO2 is hindered by slow surface reaction kinetics due to the high activation barrier of CO2 and the lack of activation centers in the photocatalyst. To overcome these limitations, this study focuses on enhancing the photocatalytic performance through incorporating Cu atoms into BiOCl. By introducing a minute amount of Cu (0.18 wt%) into BiOCl nanosheets, significant improvements were achieved, with a CO yield of 38.3 µmol g-1 from CO2 reduction, surpassing that of pristine BiOCl by 50%. To explore the surface dynamics of CO2 adsorption, activation and reactions, in situ DRIFTS was employed. Theoretical calculations were further performed to elucidate the role of Cu in the photocatalytic process. The results demonstrate that the incorporation of Cu into BiOCl induces surface charge redistribution, which facilitates efficient trapping of photogenerated electrons and accelerates the separation of photogenerated charge carriers. Furthermore, Cu modification on BiOCl effectively lowers the activation energy barrier by stabilizing the COOH* intermediate, thereby turning the rate-limiting step from COOH* formation to CO* desorption and boosting the CO2 reduction process. This work unveils the atomic-level role of modified Cu in enhancing the CO2 reduction reaction and presents a novel concept for achieving highly efficient photocatalysts.

2.
Small ; 18(25): e2201927, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35595714

RESUMEN

The fabrication of heterostructures has inspired extensive interest in promoting the performance of solar cells or solar fuel production, but it is still challenging for nitrides to prepare structurally ordered heterostructures. Herein, one nickel nitride-based heterostructure composed of 1D Ni0.2 Mo0.8 N nanorods and 0D Ni3 N nanoparticles (denoted as NiMoN/NiN) is reported to exhibit significantly promoted hydrogen evolution reaction performance in both alkaline and neutral media. In particular, the optimal overpotential of the NiMoN/NiN sample at 10 mA cm-2 in 1 m KOH is 49 mV. The successful fabrication of 1D/0D heterostructures is mainly ascribed to morphology-inherited nitridation of 1D oxide precursor (denoted as NiMoO-NRs) in situ grown on Ni foam surface, and attributed to strong Lewis acid-base interaction that renders the Ni2+ ions emitted from the oxide precursor to well coordinate with NH3 for the formation of Ni3 N nanoparticles during the nitridation process. It is theoretically and experimentally demonstrated that the special 1D/0D heterostructure provides tandem active phases Ni0.2 Mo0.8 N and Ni3 N for synergistic promotion in lowering the activation energy of H2 O dissociation and optimizing the adsorption energy of H, respectively. This work may open a new avenue for developing highly active tandem electrocatalysts for promising renewable energy conversion.

3.
Nanotechnology ; 32(38)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34134090

RESUMEN

The electrochemical reduction of CO2into value-added fuels and chemicals using single atom (SACs) or dual-atom catalysts (DACs) has been extensively studied, but the reaction mechanism and design rules are still unclear. Here, we studied the role of dual-metal atoms on graphite carbon nitride (M1M2@g-CN, M1M2 = CuCu, FeFe, RuRu, RuCu, RuFe, CuFe) for selective and efficient CO2electrochemical reduction based on density functional theory. Our results show that CO2RR on RuRu@g-CN catalyst prefers the *COOH pathway, while for CuCu@g-CN, FeFe@g-CN, RuCu@g-CN, RuFe@g-CN, CuFe@g-CN catalysts, the *OCHO pathway is more suitable. Among all the DACs combinations, we found that RuCu@g-CN and RuFe@g-CN are the most promising electrocatalysts for CO2RR with a lower limiting potential, which is attributed to the synergistic effect of different O- and C-affinity of the heterocenters in DACs. The selectivity of RuCu@g-CN and RuFe@g-CN to the production of CH4is better than that of H2evolution. In addition, we also found that the adsorption free energy of intermediate on heteroatomic DACs can be predicted by those on homoatomic DACs, which can be used to further predict the limiting potential.

4.
ACS Appl Mater Interfaces ; 12(50): 56039-56048, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33263995

RESUMEN

Crystal facet engineering provides a promising approach to tailor the performance of catalysts because of the close relationship between the photocatalytic activity and the surface atomic and electronic structures. An in-depth understanding mechanism of crystal facet-dependent CO2 photoreduction is still an open question. Herein, two different types of porous ZnO nanocatalysts are used as model photocatalysts for the investigation, which are, respectively, with exposed {110} and {001} facets. The porous ZnO with an exposed {110} facet exhibits superior photocatalytic activity to the one with the {001} facet. Various influencing factors have been thoroughly studied both theoretically and/or experimentally, including light harvesting (i.e., band gap), reduction capability (potential of conduction band), crystallinity, CO2 adsorption ability, CO2 activation, and charge separation. The major influencing factors are eventually figured out based on the experimental and calculation results. The product selectivity and the influence of the hole scavenger can be explained too. Our work may pave a way for directing the future rational design of efficient photocatalysts for CO2 reduction.

5.
Sci Rep ; 8: 46984, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29756605

RESUMEN

This corrects the article DOI: 10.1038/srep09561.

6.
Chem Rec ; 16(4): 1918-33, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27276171

RESUMEN

Photoreduction of CO2 , which utilizes solar energy to convert CO2 into hydrocarbons, can be an effective means to overcome the increasing energy crisis and mitigate the rising emissions of greenhouse gas. This article covers recent advances in the CO2 photoreduction over heterostructure-based photocatalysts. The fundamentals of CO2 photoreduction and classification of the heterostructured photocatalysts are discussed first, followed by the latest work on the CO2 photoreduction over heterostructured photocatalysts in terms of the classification of the coupling semiconductors. Finally, a brief summary and a perspective on the challenges in this area are presented.

7.
J Chem Phys ; 142(22): 224305, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-26071708

RESUMEN

We have performed a systematic study on a series of low dimensional TiO2 nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO2 nanostructures are analyzed. Based on the Ti2O4 building unit, a series of 1D TiO2 nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO2 chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO2 nanostructure in the future.

8.
Sci Rep ; 5: 9561, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25825365

RESUMEN

Different approaches like doping and sensitization have been used to develop photocatalysts that can lead to high reactivity under visible-light illumination, which would allow efficient utilization of solar irradiation and even interior lighting. We demonstrated a conceptually different approach by changing reaction route via introducing the idea of conventional Pd catalysis used in cross-coupling reactions into photocatalysis. The -O-Pd-Cl surface species modified on Ni-doped TiO2 can play a role the same as that in chemical catalysis, resulting in remarkably enhanced photocatalytic activity under visible-light irradiation. For instance, Pd/Ni-TiO2 has much higher activity than N-TiO2 (about 3 ~ 9 times for all of the 4-XP systems) upon irradiation with wavelength of 420 nm. The catalytically active Pd(0) is achieved by reduction of photogenerated electrons from Ni-TiO2. Given high efficient, stable Pd catalysts or other suitable chemical catalysts, this concept may enable realization of the practical applications of photocatalysis.

9.
Phys Chem Chem Phys ; 15(24): 9891-8, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23670586

RESUMEN

Owing to potential industrial applications and fundamental significance, tailored synthesis of well-defined anatase TiO2 nanocrystals with exposed highly reactive {001} facets has stimulated great research interest. In this work, surface-fluorinated anatase TiO2 nanocrystals have been successfully prepared by using an ionic liquid (IL) assisted hydrothermal synthetic route. TiCl4 is used as precursor, and 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim](+)[BF4](-)) as morphology-controlling agent. The anion of the IL plays a key role in controlling the crystallization process via a dissolution-recrystallization process. Compared with the benchmark material Degussa P25, the fluorinated anatase TiO2 nanocrystals exhibit superior photocatalytic activity.

10.
J Chem Phys ; 134(2): 024522, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21241135

RESUMEN

The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.


Asunto(s)
Fulerenos/química , Hidrógeno/química , Teoría Cuántica , Sodio/química , Adsorción , Litio/química , Propiedades de Superficie
11.
J Chem Phys ; 127(23): 234705, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18154407

RESUMEN

Equilibrium geometries, charge distributions, stabilities, and electronic properties of the Ag-adsorbed (SiO(2))(n) (n=1-7) clusters have been investigated using density functional theory with generalized gradient approximation for exchange-correlation functional. The results show that the Ag atom preferably binds to silicon atom with dangling bond in nearly a fixed direction, and the incoming Ag atoms tend to cluster on the existing Ag cluster leading to the formation of Ag islands. The adsorbed Ag atom only causes charge redistributions of the atoms near itself. The effect of the adsorbed Ag atom on the bonding natures and structural features of the silica clusters is minor, attributing to the tendency of stability order of Ag(SiO(2))(n) (n=1-7) clusters in consistent with silica clusters. In addition, the energy gaps between the highest occupied and lowest unoccupied molecular orbitals remarkably decrease compared with the pure (SiO(2))(n) (n=1-7) clusters, eventually approaching the near infrared radiation region. This suggests that these small clusters may be an alternative material which has a similar functionality in treating cancer to the large gold-coated silica nanoshells and the small Au(3)(SiO(2))(3) cluster.


Asunto(s)
Modelos Químicos , Dióxido de Silicio/química , Plata/química , Adsorción , Simulación por Computador , Electrones , Teoría Cuántica , Propiedades de Superficie
12.
J Chem Phys ; 126(23): 234704, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17600432

RESUMEN

The geometries, stabilities, and electronic properties of TiSin (n=2-15) clusters with different spin configurations have been systematically investigated by using density-functional theory approach at B3LYP/LanL2DZ level. According to the optimum TiSin clusters, the equilibrium site of Ti atom gradually moves from convex to surface, and to a concave site as the number of Si atom increases from 2 to 15. When n=12, the Ti atom in TiSi12 completely falls into the center of the Si outer frame, forming metal-encapsulated Si cages, which can be explained by using 16-electron rule. On the basis of the optimized geometries, various energetic properties are calculated for the most stable isomers of TiSin clusters, including the average binding energy, the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) gap, fragmentation energy, and the second-order difference of energy. It is found that at size n=6,8,12 the clusters are more stable than neighboring ones. According to the Mulliken charge population analysis, charges always transfer from Si atoms to Ti atom. Furthermore, the HOMO-LUMO gaps of the most stable TiSin clusters are usually smaller than those of Sin clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA