Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Schizophr Bull ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869147

RESUMEN

BACKGROUND AND HYPOTHESIS: Investigating the shared brain protein and genetic components of schizophrenia (SCZ) and bipolar I disorder (BD-I) presents a unique opportunity to understand the underlying pathophysiological processes and pinpoint potential drug targets. STUDY DESIGN: To identify overlapping susceptibility brain proteins in SCZ and BD-I, we carried out proteome-wide association studies (PWAS) and Mendelian Randomization (MR) by integrating human brain protein quantitative trait loci with large-scale genome-wide association studies for both disorders. We utilized transcriptome-wide association studies (TWAS) to determine the consistency of mRNA-protein dysregulation in both disorders. We applied pleiotropy-informed conditional false discovery rate (pleioFDR) analysis to identify common risk genetic loci for SCZ and BD-I. Additionally, we performed a cell-type-specific analysis in the human brain to detect risk genes notably enriched in distinct brain cell types. The impact of risk gene overexpression on dendritic arborization and axon length in neurons was also examined. STUDY RESULTS: Our PWAS identified 42 proteins associated with SCZ and 14 with BD-I, among which NEK4, HARS2, SUGP1, and DUS2 were common to both conditions. TWAS and MR analysis verified the significant risk gene NEK4 for both SCZ and BD-I. PleioFDR analysis further supported genetic risk loci associated with NEK4 for both conditions. The cell-type specificity analysis revealed that NEK4 is expressed on the surface of glutamatergic neurons, and its overexpression enhances dendritic arborization and axon length in cultured primary neurons. CONCLUSIONS: These findings underscore a shared genetic origin for SCZ and BD-I, offering novel insights for potential therapeutic target identification.

2.
EBioMedicine ; 105: 105197, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876042

RESUMEN

BACKGROUND: The need for new therapeutics for attention deficit hyperactivity disorder (ADHD) is evident. Brain, cerebrospinal fluid (CSF), and plasma protein biomarkers with causal genetic evidence could represent potential drug targets. However, a comprehensive screen of the proteome has not yet been conducted. METHODS: We employed a three-pronged approach using Mendelian Randomization (MR) and Bayesian colocalization analysis. Firstly, we studied 608 brains, 214 CSF, and 612 plasma proteins as potential causal mediators of ADHD using MR analysis. Secondly, we analysed the consistency of the discovered biomarkers across three distinct subtypes of ADHD: childhood, persistent, and late-diagnosed ADHD. Finally, we extended our analysis to examine the correlation between identified biomarkers and Tourette syndrome and pervasive autism spectrum disorder (ASD), conditions often linked with ADHD. To validate the MR findings, we conducted sensitivity analysis. Additionally, we performed cell type analysis on the human brain to identify risk genes that are notably enriched in various brain cell types. FINDINGS: After applying Bonferroni correction, we found that the risk of ADHD was increased by brain proteins GMPPB, NAA80, HYI, CISD2, and HYI, TIE1 in CSF and plasma. Proteins GMPPB, NAA80, ICA1L, CISD2, TIE1, and RMDN1 showed overlapped loci with ADHD risk through Bayesian colocalization. Overexpression of GMPPB protein was linked to an increase in the risk for all three ADHD subtypes. While ICA1L provided protection against both ASD and ADHD, CISD2 increased the probability of both disorders. Cell-specific studies revealed that GMPPB, NAA80, ICA1L, and CISD2 were predominantly present on the surface of excitatory-inhibitory neurons. INTERPRETATION: Our comprehensive MR investigation of the brain, CSF, and plasma proteomes revealed seven proteins with causal connections to ADHD. Particularly, GMPPB and TIE1 emerged as intriguing targets for potential ADHD therapy. FUNDING: This work was partly funded by the Key R & D Program of Zhejiang (T.L. 2022C03096); the National Natural Science Foundation of China Project (C.Z. 82001413); Postdoctoral Foundation of West China Hospital (C.Z. 2020HXBH163).

3.
Heliyon ; 10(10): e31376, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38818172

RESUMEN

Background: Palmoplantar warts (PWs) are a usual skin disease associated with human papillomavirus (HPV) that can affect patients' quality of life. The traditional Chinese medicine (TCM) Weiren Xiaoyou formula (WRXYF) is a relatively gentle and effective therapy that has achieved good therapeutic effects in clinical practice, but its mechanism has not yet been studied. Methods: A meta-analysis was carried out to identify the potential advantages of topical TCM for PW treatment. Clinical cases suggested that WRXYF was an effective therapeutic agent against PWs. Network pharmacology was utilized to predict potential targets for the main bioactive compound, tanshinone IIA (Tan IIA), in WRXYF. High-performance liquid chromatography with electrospray mass spectrometry (HPLC/ESI-MS) was applied to detect major components. The bioactivity of Tan IIA against PWs was then validated with quantitative polymerase chain reaction (q-PCR), fluorescence in situ hybridization (FISH), electron microscopy and Western blotting. Results: A meta-analysis was conducted on 10 randomized clinical trials (RCTs) involving 2260 participants suggested that topical TCM could more effectively treat PWs than conventional medications. Network pharmacology identified Tan IIA as a candidate agent from 17 major compounds assessed by HPLC/ESI-MS because of its stable binding with 10 PW targets. HPV2, HPV27, and HPV57 were the main infectious strains in tissues obtained from PW patients and in HPV-infected HaCaT cells. Tan IIA treatment effectively destroyed viral particles and reduced the viral copy numbers of the three HPV subtypes. The results shown that Tan IIA has the ability to halt the cell cycle of HPV-infected HaCaT cells specifically in the G0/G1 phase. A total of 6 cell cycle-related proteins were regulated after Tan IIA treatment, demonstrating the role of Tan IIA in inhibiting the cell cycle. Conclusion: Tan IIA, the primary bioactive constituent in WRXYF, enhances PWs by halting the cell cycle in the G0/G1 phase via modulation of the p53 signaling pathway.

4.
J Psychiatr Res ; 175: 251-258, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38749299

RESUMEN

OBJECTIVE: The high prevalence and addictive features of nonsuicidal self-injury (NSSI) in adolescents have been documented, but the role of addictive features in the process from NSSI functions to behaviour remains unclear. The major aim of this study was to investigate the effect of addictive features on NSSI functions and the severity of repeated NSSI. METHODS: A total of 10,781 students from primary and middle schools in Chengdu and Karamay were invited to participate in the online cross-sectional survey, and 10,501 completed the survey. Two self-report questionnaires, the Ottawa Self-Injury Inventory (OSI) and the Adolescent Self-Harm Scale (ASHS), were used to collect data from all participants. RESULTS: Among the students, 23.45% and 6.64% reported having engaged in NSSI at least once or at least five times in the past year. Being a girl, being an only child, and being in a single-parent family were significantly associated with more severe NSSI. Addictive features have high value for predicting repeated NSSI. In addition to their significant independent/direct additive effects, addictive features mediated and moderated the relationship between NSSI functions and increased severity of NSSI in adolescents. DISCUSSION AND CONCLUSIONS: The findings suggest that addictive features play a critical role in the development of repeated NSSI in adolescents, which indicates that addiction models may partially explain the mechanism underlying increased severity of NSSI. This may enhance understanding of the reasons for repeated NSSI and inform interventions for repeated NSSI among adolescents.

5.
Brain Imaging Behav ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713331

RESUMEN

While alterations in cortical thickness have been widely observed in individuals with alcohol dependence, knowledge about cortical thickness-based structural covariance networks is limited. This study aimed to explore the topological disorganization of structural covariance networks based on cortical thickness at the single-subject level among patients with alcohol dependence. Structural imaging data were obtained from 61 patients with alcohol dependence during early abstinence and 59 healthy controls. The single-subject structural covariance networks were constructed based on cortical thickness data from 68 brain regions and were analyzed using graph theory. The relationships between network architecture and clinical characteristics were further investigated using partial correlation analysis. In the structural covariance networks, both patients with alcohol dependence and healthy controls displayed small-world topology. However, compared to controls, alcohol-dependent individuals exhibited significantly altered global network properties characterized by greater normalized shortest path length, greater shortest path length, and lower global efficiency. Patients exhibited lower degree centrality and nodal efficiency, primarily in the right precuneus. Additionally, scores on the Alcohol Use Disorder Identification Test were negatively correlated with the degree centrality and nodal efficiency of the left middle temporal gyrus. The results of this correlation analysis did not survive after multiple comparisons in the exploratory analysis. Our findings may reveal alterations in the topological organization of gray matter networks in alcoholism patients, which may contribute to understanding the mechanisms of alcohol addiction from a network perspective.

6.
Psychol Med ; : 1-8, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738283

RESUMEN

BACKGROUND: Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear. METHODS: This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design. RESULTS: Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups. CONCLUSIONS: Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.

7.
Gen Psychiatr ; 37(2): e101347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616969

RESUMEN

Background: Elevated platelet count (PLTc) is associated with first-episode schizophrenia and adverse outcomes in individuals with precursory psychosis. However, the impact of antipsychotic medications on PLTc and its association with symptom improvement remain unclear. Aims: We aimed to investigate changes in PLTc levels following antipsychotic treatment and assess whether PLTc can predict antipsychotic responses and metabolic changes after accounting for other related variables. Methods: A total of 2985 patients with schizophrenia were randomised into seven groups. Each group received one of seven antipsychotic treatments and was assessed at 2, 4 and 6 weeks. Clinical symptoms were evaluated using the positive and negative syndrome scale (PANSS). Additionally, we measured blood cell counts and metabolic parameters, such as blood lipids. Repeated measures analysis of variance was used to examine the effect of antipsychotics on PLTc changes, while structural equation modelling was used to assess the predictive value of PLTc on PANSS changes. Results: PLTc significantly increased in patients treated with aripiprazole (F=6.00, p=0.003), ziprasidone (F=7.10, p<0.001) and haloperidol (F=3.59, p=0.029). It exhibited a positive association with white blood cell count and metabolic indicators. Higher baseline PLTc was observed in non-responders, particularly in those defined by the PANSS-negative subscale. In the structural equation model, PLTc, white blood cell count and a latent metabolic variable predicted the rate of change in the PANSS-negative subscale scores. Moreover, higher baseline PLTc was observed in individuals with less metabolic change, although this association was no longer significant after accounting for baseline metabolic values. Conclusions: Platelet parameters, specifically PLTc, are influenced by antipsychotic treatment and could potentially elevate the risk of venous thromboembolism in patients with schizophrenia. Elevated PLTc levels and associated factors may impede symptom improvement by promoting inflammation. Given PLTc's easy measurement and clinical relevance, it warrants increased attention from psychiatrists. Trial registration number: ChiCTR-TRC-10000934.

8.
Schizophr Bull ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635296

RESUMEN

BACKGROUND: Cortical thickness (CT) alterations, mismatch negativity (MMN) reductions, and cognitive deficits are robust findings in first-episode psychosis (FEP). However, most studies focused on medicated patients, leaving gaps in our understanding of the interrelationships between CT, MMN, neurocognition, and psychosocial functioning in unmedicated FEP. This study aimed to employ multiple mediation analysis to investigate potential pathways among these variables in unmedicated drug-naïve FEP. METHODS: We enrolled 28 drug-naïve FEP and 34 age and sex-matched healthy controls. Clinical symptoms, neurocognition, psychosocial functioning, auditory duration MMN, and T1 structural magnetic resonance imaging data were collected. We measured CT in the superior temporal gyrus (STG), a primary MMN-generating region. RESULTS: We found a significant negative correlation between MMN amplitude and bilateral CT of STG (CT_STG) in FEP (left: r = -.709, P < .001; right: r = -.612, P = .008). Multiple mediation models revealed that a thinner left STG cortex affected functioning through both direct (24.66%) and indirect effects (75.34%). In contrast, the effects of the right CT_STG on functioning were mainly mediated through MMN and neurocognitive pathways. CONCLUSIONS: Bilateral CT_STG showed significant association with MMN, and MMN plays a mediating role between CT and cognition. Both MMN alone and its interaction with cognition mediated the effects of structural alterations on psychosocial function. The decline in overall function in FEP may stem from decreased CT_STG, leading to subsequent MMN deficits and neurocognitive dysfunction. These findings underline the crucial role of MMN in elucidating how subtle structural alterations can impact neurocognition and psychosocial function in FEP.

9.
CNS Neurosci Ther ; 30(4): e14713, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615362

RESUMEN

AIMS: We aimed to evaluate the potential of a novel selective α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator, LT-102, in treating cognitive impairments associated with schizophrenia (CIAS) and elucidating its mechanism of action. METHODS: The activity of LT-102 was examined by Ca2+ influx assays and patch-clamp in rat primary hippocampal neurons. The structure of the complex was determined by X-ray crystallography. The selectivity of LT-102 was evaluated by hERG tail current recording and kinase-inhibition assays. The electrophysiological characterization of LT-102 was characterized by patch-clamp recording in mouse hippocampal slices. The expression and phosphorylation levels of proteins were examined by Western blotting. Cognitive function was assessed using the Morris water maze and novel object recognition tests. RESULTS: LT-102 is a novel and selective AMPAR potentiator with little agonistic effect, which binds to the allosteric site formed by the intradimer interface of AMPAR's GluA2 subunit. Treatment with LT-102 facilitated long-term potentiation in mouse hippocampal slices and reversed cognitive deficits in a phencyclidine-induced mouse model. Additionally, LT-102 treatment increased the protein level of brain-derived neurotrophic factor and the phosphorylation of GluA1 in primary neurons and hippocampal tissues. CONCLUSION: We conclude that LT-102 ameliorates cognitive impairments in a phencyclidine-induced model of schizophrenia by enhancing synaptic function, which could make it a potential therapeutic candidate for CIAS.


Asunto(s)
Disfunción Cognitiva , Propionatos , Esquizofrenia , Animales , Ratones , Ratas , Fenciclidina , Esquizofrenia/complicaciones , Esquizofrenia/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Isoxazoles
10.
J Psychiatr Res ; 172: 402-410, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458112

RESUMEN

We aimed to examine the hypotheses that glucolipid metabolism is linked to neurocognition and gray matter volume (GMV) and that GMV mediates the association of glucolipid metabolism with neurocognition in first-episode, drug-naïve (FEDN) patients with schizophrenia. Parameters of glucolipid metabolism, neurocognition, and magnetic resonance imaging were assessed in 63 patients and 31 controls. Compared to controls, patients exhibited higher levels of fasting glucose, triglyceride, and insulin resistance index, lower levels of cholesterol and high-density lipoprotein cholesterol, poorer neurocognitive functions, and decreased GMV in the bilateral insula, left middle occipital gyrus, and left postcentral gyrus. In the patient group, triglyceride levels and the insulin resistance index exhibited a negative correlation with Rapid Visual Information Processing (RVP) mean latency, a measure of attention within the Cambridge Neurocognitive Test Automated Battery (CANTAB), while showing a positive association with GMV in the right insula. The mediation model revealed that triglyceride and insulin resistance index had a significant positive indirect (mediated) influence on RVP mean latency through GMV in the right insula. Glucolipid metabolism was linked to both neurocognitive functions and GMV in FEDN patients with schizophrenia, with the effect pattern differing from that observed in chronic schizophrenia or schizophrenia comorbid with metabolic syndrome. Moreover, glucolipid metabolism might indirectly contribute to neurocognitive deficits through the mediating role of GMV in these patients.


Asunto(s)
Resistencia a la Insulina , Esquizofrenia , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Imagen por Resonancia Magnética/métodos , Colesterol , Triglicéridos
11.
Psychol Med ; : 1-11, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38523252

RESUMEN

BACKGROUND: Although dopaminergic disturbances are well-known in schizophrenia, the understanding of dopamine-related brain dynamics remains limited. This study investigates the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES). METHODS: Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs). Frame-wise clustering was implemented to generate CAPs related to SN activation or deactivation. Connectome features of each CAP were derived using an edge-centric method. The occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and compared between two groups, and correlations between temporal dynamic metrics and symptom burdens were explored. RESULTS: Functional reconfigurations in CAPs exhibited significant differences between the activation and deactivation states of SN. During SN activation, FES more frequently recruited a CAP characterized by activated default network, language network, control network, and the caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES exhibited increased recruitment of a CAP with activated visual and dorsal attention networks but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034). CONCLUSION: Our results suggest that neuroregulatory dysfunction in dopaminergic pathways involving SN potentially mediates aberrant time-varying functional reorganizations in schizophrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective of brain dynamics.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38403735

RESUMEN

There is inconsistent evidence for an association of obesity with white matter microstructural alterations. Such inconsistent findings may be related to the cumulative effects of obesity and alcohol dependence. This study aimed to investigate the possible interactions between alcohol dependence and overweight/obesity on white matter microstructure in the human brain. A total of 60 inpatients with alcohol dependence during early abstinence (44 normal weight and 16 overweight/obese) and 65 controls (42 normal weight and 23 overweight/obese) were included. The diffusion tensor imaging (DTI) measures [fractional anisotropy (FA) and radial diffusivity (RD)] of the white matter microstructure were compared between groups. We observed significant interactive effects between alcohol dependence and overweight/obesity on DTI measures in several tracts. The DTI measures were not significantly different between the overweight/obese and normal-weight groups (although widespread trends of increased FA and decreased RD were observed) among controls. However, among the alcohol-dependent patients, the overweight/obese group had widespread reductions in FA and widespread increases in RD, most of which significantly differed from the normal-weight group; among those with overweight/obesity, the alcohol-dependent group had widespread reductions in FA and widespread increases in RD, most of which were significantly different from the control group. This study found significant interactive effects between overweight/obesity and alcohol dependence on white matter microstructure, indicating that these two controllable factors may synergistically impact white matter microstructure and disrupt structural connectivity in the human brain.

13.
BMC Psychol ; 12(1): 46, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38268052

RESUMEN

BACKGROUND: Network modeling has been proposed as an effective approach to examine complex associations among antecedents, mediators and symptoms. This study aimed to investigate whether the severity of depressive symptoms affects the multivariate relationships among symptoms and mediating factors over a 2-year longitudinal follow-up. METHODS: We recruited a school-based cohort of 1480 primary and secondary school students over four semesters from January 2020 to December 2021. The participants (n = 1145) were assessed at four time points (ages 10-13 years old at baseline). Based on a cut-off score of 5 on the 9-item Patient Health Questionnaire at each time point, the participants were categorized into the non-depressive symptom (NDS) and depressive symptom (DS) groups. We conducted network analysis to investigate the symptom-to-symptom influences in these two groups over time. RESULTS: The global network metrics did not differ statistically between the NDS and DS groups at four time points. However, network connection strength varied with symptom severity. The edge weights between learning anxiety and social anxiety were prominently in the NDS group over time. The central factors for NDS and DS were oversensitivity and impulsivity (3 out of 4 time points), respectively. Moreover, both node strength and closeness were stable over time in both groups. CONCLUSIONS: Our study suggests that interrelationships among symptoms and contributing factors are generally stable in adolescents, but a higher severity of depressive symptoms may lead to increased stability in these relationships.


Asunto(s)
Ansiedad , Depresión , Humanos , Adolescente , Niño , Depresión/epidemiología , Trastornos de Ansiedad , Conducta Impulsiva , Aprendizaje
14.
Psychopharmacology (Berl) ; 241(1): 97-107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37735237

RESUMEN

RATIONALE: An imbalance of the tryptophan kynurenine pathway (KP) commonly occurs in psychiatric disorders, though the neurocognitive and network-level effects of this aberration are unclear. OBJECTIVES: In this study, we examined the connection between dysfunction in the frontostriatal brain circuits, imbalances in the tryptophan kynurenine pathway (KP), and neurocognition in major psychiatric disorders. METHODS: Forty first-episode medication-naive patients with schizophrenia (SCZ), fifty patients with bipolar disorder (BD), fifty patients with major depressive disorder (MDD), and forty-two healthy controls underwent resting-state functional magnetic resonance imaging. Plasma levels of KP metabolites were measured, and neurocognitive function was evaluated. Frontostriatal connectivity and KP metabolites were compared between groups while controlling for demographic and clinical characteristics. Canonical correlation analyses were conducted to explore multidimensional relationships between frontostriatal circuits-KP and KP-cognitive features. RESULTS: Patient groups shared hypoconnectivity between bilateral ventrolateral prefrontal cortex (vlPFC) and left insula, with disorder-specific dysconnectivity in SCZ related to PFC, left dorsal striatum hypoconnectivity. The BD group had higher anthranilic acid and lower xanthurenic acid levels than the other groups. KP metabolites and ratios related to disrupted frontostriatal dysconnectivity in a transdiagnostic manner. The SCZ group and MDD group separately had high-dimensional associations between KP metabolites and cognitive measures. CONCLUSIONS: The findings suggest that KP may influence cognitive performance across psychiatric conditions via frontostriatal dysfunction.


Asunto(s)
Trastorno Depresivo Mayor , Quinurenina , Humanos , Quinurenina/metabolismo , Triptófano , Trastorno Depresivo Mayor/diagnóstico , Sustancia Gris , Corteza Cerebral/metabolismo
15.
Curr Neuropharmacol ; 22(1): 159-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36600620

RESUMEN

BACKGROUND: Total white blood cell count (TWBCc), an index of chronic and low-grade inflammation, is associated with clinical symptoms and metabolic alterations in patients with schizophrenia. The effect of antipsychotics on TWBCc, predictive values of TWBCc for drug response, and role of metabolic alterations require further study. METHODS: Patients with schizophrenia were randomized to monotherapy with risperidone, olanzapine, quetiapine, aripiprazole, ziprasidone, perphenazine or haloperidol in a 6-week pharmacological trial. We repeatedly measured clinical symptoms, TWBCc, and metabolic measures (body mass index, blood pressure, waist circumference, fasting blood lipids and glucose). We used mixed-effect linear regression models to test whether TWBCc can predict drug response. Mediation analysis to investigate metabolic alteration effects on drug response. RESULTS: At baseline, TWBCc was higher among patients previously medicated. After treatment with risperidone, olanzapine, quetiapine, perphenazine, and haloperidol, TWBCc decreased significantly (p < 0.05). Lower baseline TWBCc predicted greater reductions in Positive and Negative Syndrome Scale (PANSS) total and negative scores over time (p < 0.05). We found significant mediation of TWBCc for effects of waist circumference, fasting low-density lipoprotein cholesterol, and glucose on reductions in PANSS total scores and PANSS negative subscale scores (p < 0.05). CONCLUSION: TWBCc is affected by certain antipsychotics among patients with schizophrenia, with decreases observed following short-term, but increases following long-term treatment. TWBCc is predictive of drug response, with lower TWBCc predicting better responses to antipsychotics. It also mediates the effects of certain metabolic measures on improvement of negative symptoms. This indicates that the metabolic state may affect clinical manifestations through inflammation.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Olanzapina/uso terapéutico , Risperidona/uso terapéutico , Fumarato de Quetiapina/uso terapéutico , Haloperidol/uso terapéutico , Perfenazina/uso terapéutico , Benzodiazepinas/efectos adversos , Glucosa/uso terapéutico , Inflamación/tratamiento farmacológico
16.
Psychol Med ; : 1-12, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084608

RESUMEN

BACKGROUND: Convergent evidence has suggested atypical relationships between brain structure and function in major psychiatric disorders, yet how the abnormal patterns coincide and/or differ across different disorders remains largely unknown. Here, we aim to investigate the common and/or unique dynamic structure-function coupling patterns across major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). METHODS: We quantified the dynamic structure-function coupling in 452 patients with psychiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct brain network levels, such as global, meso-, and local levels. We also correlated dynamic structure-function coupling with the topological features of functional networks to examine how the structure-function relationship facilitates brain information communication over time. RESULTS: The dynamic structure-function coupling is preserved for the three disorders at the global network level. Similar abnormalities in the rich-club organization are found in two distinct functional configuration states at the meso-level and are associated with the disease severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed in the brain regions involving the visual, cognitive control, and default mode networks. In addition, the relationships between structure-function coupling and the topological features of functional networks are altered in a manner indicative of state specificity. CONCLUSIONS: These findings suggest both transdiagnostic and illness-specific alterations in the dynamic structure-function relationship of large-scale brain networks across MDD, BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental basis underlying the behavioral and cognitive deficits observed in these disorders.

17.
Genet Test Mol Biomarkers ; 27(12): 370-383, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156909

RESUMEN

Purpose: The aim of this study was to characterize key biomarkers associated with pyroptosis in atopic dermatitis (AD). Materials and methods: To identify the differentially expressed pyroptosis-related genes (DEPRGs), the gene expression profiles GSE16161 and GSE32924 from the Gene Expression Omnibus (GEO) database were utilized. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to determine the potential biological functions and involved pathways. Furthermore, protein-protein interaction network analyses were performed to identify hub genes. The types and proportions of infiltrating immune cells were detected by immune filtration analysis using CIBERSORT. A 12-axis competing endogenous RNA (ceRNA) network was constructed utilizing the miRNet database. Immunohistochemistry (IHC) further validated the differential expression of a key gene IRF1 in the skin tissues collected from AD patients. The collection of skin tissue from human subjects in this study were reviewed and approved by the IRB of Yueyang Integrated Chinese and Western Medicine Hospital (KYSKSB2020-125). Results: The study identified a total of 76 DEPRGs, which were enriched in genes associated with the inflammatory response and immune regulation. There was a higher percentage of activated dendritic cells and a lower percentage of resting mast cells in AD samples. PVT1 expression was associated with upregulation of hub genes including CXCL8, IRF1, MKI67, and TP53 in the ceRNA network and was correlated with activated dendritic cells in AD. As a transcription factor, IRF1 could regulate the production of downstream inflammatory factors. The IHC study revealed that IRF1 was overexpressed in the skin tissues of AD patients, which were consistent with the results of the bioinformatic study. Conclusions: IRF1 and its related genes were identified as key pyroptosis-related biomarkers in AD, which is a crucial pathway in the pathogenesis of AD.


Asunto(s)
Dermatitis Atópica , Factor 1 Regulador del Interferón , Piroptosis , Humanos , Biología Computacional , Dermatitis Atópica/genética , Factor 1 Regulador del Interferón/genética , Pronóstico , Piroptosis/genética
18.
Schizophrenia (Heidelb) ; 9(1): 79, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935744

RESUMEN

Schizophrenia has been linked to polymorphism in genes encoding components of the complement system, and hyperactive complement activity has been linked to immune dysfunction in schizophrenia patients. Whether and how specific complement components influence brain structure and cognition in the disease is unclear. Here we compared 52 drug-naïve patients with first-episode schizophrenia and 52 healthy controls in terms of levels of peripheral complement factors, cortical thickness (CT), logical memory and psychotic symptoms. We also explored the relationship between complement factors with CT, cognition and psychotic symptoms. Patients showed significantly higher levels of C1q, C4, factor B, factor H, and properdin in plasma. Among patients, higher levels of C3 in plasma were associated with worse memory recall, while higher levels of C4, factor B and factor H were associated with thinner sensory cortex. These findings link dysregulation of specific complement components to abnormal brain structure and cognition in schizophrenia.

19.
J Psychiatr Res ; 168: 13-21, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871461

RESUMEN

Previous diffusion tensor imaging (DTI) studies have demonstrated widespread white matter microstructure damage in individuals with alcoholism. However, very little is known about the alterations in the topological architecture of white matter structural networks in alcohol dependence (AD). This study included 67 AD patients and 69 controls. The graph theoretical analysis method was applied to examine the topological organization of the white matter structural networks, and network-based statistics (NBS) were employed to detect structural connectivity alterations. Compared to controls, AD patients exhibited abnormal global network properties characterized by increased small-worldness, normalized clustering coefficient, clustering coefficient, and shortest path length; and decreased global efficiency and local efficiency. Further analyses revealed decreased nodal efficiency and degree centrality in AD patients mainly located in the default mode network (DMN), including the precuneus, anterior cingulate and paracingulate gyrus, median cingulate and paracingulate gyrus, posterior cingulate gyrus, and medial part of the superior frontal gyrus. Furthermore, based on NBS approaches, patients displayed weaker subnetwork connectivity mainly located in the region of the DMN. Additionally, altered network metrics were correlated with intelligence quotient (IQ) scores and global assessment function (GAF) scores. Our results may reveal the disruption of whole-brain white matter structural networks in AD individuals, which may contribute to our comprehension of the underlying pathophysiological mechanisms of alcohol addiction at the level of white matter structural networks.


Asunto(s)
Alcoholismo , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Alcoholismo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Corteza Prefrontal
20.
Asian J Psychiatr ; 89: 103767, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717506

RESUMEN

Identifying biomarkers to predict lapse of alcohol-dependence (AD) is essential for treatment and prevention strategies, but remains remarkably challenging. With an aim to identify neuroimaging features for predicting AD lapse, 66 male AD patients during early-abstinence (baseline) after hospitalized detoxification underwent resting-state functional magnetic resonance imaging and were then followed-up for 6 months. The relevance-vector-machine (RVM) analysis on baseline large-scale brain networks yielded an elegant model for differentiating relapsing patients (n = 38) from abstainers, with the area under the curve of 0.912 and the accuracy by leave-one-out cross-validation of 0.833. This model captured key information about neuro-connectome biomarkers for predicting AD lapse.


Asunto(s)
Alcoholismo , Humanos , Masculino , Alcoholismo/terapia , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Neuroimagen , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA