Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Microbiome ; 9(1): 34, 2021 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-33517890

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder with no absolute cure. The evidence of the involvement of gut microbiota in PD pathogenesis suggests the need to identify certain molecule(s) derived from the gut microbiota, which has the potential to manage PD. Osteocalcin (OCN), an osteoblast-secreted protein, has been shown to modulate brain function. Thus, it is of interest to investigate whether OCN could exert protective effect on PD and, if yes, whether the underlying mechanism lies in the subsequent changes in gut microbiota. RESULTS: The intraperitoneal injection of OCN can effectively ameliorate the motor deficits and dopaminergic neuronal loss in a 6-hydroxydopamine-induced PD mouse model. The further antibiotics treatment and fecal microbiota transplantation experiments confirmed that the gut microbiota was required for OCN-induced protection in PD mice. OCN elevated Bacteroidetes and depleted Firmicutes phyla in the gut microbiota of PD mice with elevated potential of microbial propionate production and was confirmed by fecal propionate levels. Two months of orally administered propionate successfully rescued motor deficits and dopaminergic neuronal loss in PD mice. Furthermore, AR420626, the agonist of FFAR3, which is the receptor of propionate, mimicked the neuroprotective effects of propionate and the ablation of enteric neurons blocked the prevention of dopaminergic neuronal loss by propionate in PD mice. CONCLUSIONS: Together, our results demonstrate that OCN ameliorates motor deficits and dopaminergic neuronal loss in PD mice, modulating gut microbiome and increasing propionate level might be an underlying mechanism responsible for the neuroprotective effects of OCN on PD, and the FFAR3, expressed in enteric nervous system, might be the main action site of propionate. Video abstract.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Fármacos Neuroprotectores/farmacología , Osteocalcina/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Propionatos/metabolismo , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/efectos de los fármacos , Infusiones Parenterales , Masculino , Ratones , Fármacos Neuroprotectores/administración & dosificación , Osteocalcina/administración & dosificación , Oxidopamina , Enfermedad de Parkinson/microbiología , Enfermedad de Parkinson/fisiopatología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
3.
Mol Brain ; 12(1): 23, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909971

RESUMEN

It is now generally accepted that the extra-skeleton functionalities of bone are multifaceted. Its endocrine functions came first to light when it was realized that osteoblasts, the bone forming cells, maintain energy homeostasis by improving glucose metabolism, insulin sensitivity and energy expenditure through osteocalcin, a multipurpose osteokine secreted by osteoblasts. Recently, the emerging knowledge on the functional aspects of this osteokine expanded to properties including adult and maternal regulation of cognitive functions. Therapeutic potential of this osteokine has also been recently reported in experimental Parkinson's disease models. This review highlights such findings on the functions of osteocalcin in the brain and emphasizes on exploring and analyzing much more in-depth basic and clinical studies.


Asunto(s)
Encéfalo/metabolismo , Cognición/fisiología , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/fisiopatología , Osteocalcina/metabolismo , Transducción de Señal , Animales , Humanos , Enfermedad de la Neurona Motora/terapia , Fármacos Neuroprotectores/metabolismo
4.
EBioMedicine ; 40: 56-66, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30528454

RESUMEN

BACKGROUND: Parathyroid hormone related protein (PTHrP) triggers white adipose tissue (WAT) browning and cachexia in lung cancer mouse models. It remains unknown whether excessive PTH secretion affects WAT browning and to what extent it contributes to body weight change in primary hyperparathyroidism (PHPT). METHODS: Using the adeno-associated virus injection, Pth gene over-expressed mice mimicking PHPT were firstly established to observe their WAT browning and body weight alteration. The association between PTH and body weight was investigated in 496 PHPT patients. The adipose browning activities of 20 PHPT and 60 control subjects were measured with PET/CT scanning. FINDINGS: Elevated plasma PTH triggered adipose tissue browning, leading to increased energy expenditure, reduced fat content, and finally decreased body weight in PHPT mice. Higher circulating PTH levels were associated with lower body weight (ß = -0.048, P = .0003) independent of renal function, serum calcium, phosphorus,and albumin levels in PHPT patients. PHPT patients exhibited both higher prevalence of detectable brown/beige adipose tissue (20% vs 3.3%, P = .03) and increased browning activities (SUV in cervical adipose was 0.77 vs 0.49,P = .02) compared with control subjects. INTERPRETATION: Elevated serum PTH drove WAT browning program, which contributed in part to body weight loss in both PHPT mice and patients. These results give insights into the novel pathological effect of PTH and are of importance in understanding the metabolic changes of PHPT. FUND: This research is supported by the National Key Research and Development Program of China and National Natural Science Foundation of China.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Hiperparatiroidismo Primario/metabolismo , Pérdida de Peso , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Dependovirus/genética , Femenino , Expresión Génica , Vectores Genéticos/genética , Humanos , Hiperparatiroidismo Primario/diagnóstico , Hiperparatiroidismo Primario/fisiopatología , Masculino , Ratones , Persona de Mediana Edad , Consumo de Oxígeno , Hormona Paratiroidea/genética , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas
5.
Front Mol Neurosci ; 11: 343, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319352

RESUMEN

Osteoblasts derived osteocalcin (OCN) is recently reported to be involved in dopaminergic neuronal development. As dopaminergic neuronal injury in the substantia nigra (SN) is a pathological hallmark of Parkinson's disease (PD), we investigated whether OCN could exert protective effects on 6-hydroxydopamine (6-OHDA)-induced PD rat model. Our data showed that the OCN level in the cerebrospinal fluid (CSF) in PD rat models was significantly lower than that in controls. Intervention with OCN could improve the behavioral dysfunction in PD rat models and reduce the tyrosine hydroxylase (TH) loss in the nigrostriatal system. In addition, OCN could inhibit the astrocyte and microglia proliferation in the SN of PD rats. In vitro studies showed that OCN significantly ameliorated the neurotoxicity of 6-OHDA through the AKT/GSK3ß signaling pathway. In summary, OCN plays a protective role against parkinsonian neurodegeneration in the PD rat model, suggesting a potential therapeutic use of OCN in PD.

6.
Bone Res ; 5: 17020, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28698818

RESUMEN

Bone is an endocrine organ involved in modulating glucose homeostasis. The role of the bone formation marker osteocalcin (OCN) in predicting diabetes was reported, but with conflicting results. No study has explored the association between baseline bone resorption activity and incident diabetes or prediabetes during follow-up. Our objective was to examine the relationship between the baseline bone resorption marker crosslinked C-telopeptide of type I collagen (CTX) and glycemic dysregulation after 4 years. This longitudinal study was conducted in a university teaching hospital. A total of 195 normal glucose tolerant (NGT) women at baseline were invited for follow-up. The incidence of diabetes and prediabetes (collectively defined as dysglycemia) was recorded. A total of 128 individuals completed the 4-year study. The overall conversion rate from NGT to dysglycemia was 31.3%. The incidence of dysglycemia was lowest in the middle tertile [16.3% (95% confidence interval (CI), 6.8%-30.7%)] compared with the lower [31.0% (95% CI, 17.2%-46.1%)] and upper [46.5% (95% CI, 31.2%-62.6%)] tertiles of CTX, with a significant difference seen between the middle and upper tertiles (P=0.002 5). After adjusting for multiple confounding variables, the upper tertile of baseline CTX was associated with an increased risk of incident dysglycemia, with an odds ratio of 7.09 (95% CI, 1.73-28.99) when the middle tertile was the reference. Osteoclasts actively regulate glucose homeostasis in a biphasic model that moderately enhanced bone resorption marker CTX at baseline provides protective effects against the deterioration of glucose metabolism, whereas an overactive osteoclastic function contributes to an increased risk of subsequent dysglycemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA