Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Condens Matter ; 28(34): 344002, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27367817

RESUMEN

Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases.


Asunto(s)
Modelos Químicos , Solventes/química , Benzopiranos , Ciclohexanos , Entropía , Fenómenos Físicos , Temperatura , Agua
2.
Phys Chem Chem Phys ; 14(11): 3922-34, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22322391

RESUMEN

We applied a multiscale modeling approach that involves the statistical-mechanical three-dimensional reference interaction site model with the Kovalenko-Hirata closure approximation (3D-RISM-KH molecular theory of solvation) as well as density functional theory (DFT) of electronic structure to study the role of water in aggregation of the asphaltene model compound 4,4'-bis(2-pyren-1-yl-ethyl)-2,2'-bipyridine (PBP) [X. Tan, H. Fenniri and M. R. Gray, Energy Fuels, 2008, 22, 715]. The solvation free energy and potential of mean force predicted by 3D-RISM-KH reveal favorable pathways for disaggregation of PBP dimers in pure versus water-saturated chloroform solvent. The water density distribution functions elucidate hydrogen bonding preferences and water bridge formation between PBP monomers. The ΔG(298) values of -5 to -7 kcal mol(-1) for transfer of water molecules in chloroform to a state interacting with PBP molecules are in agreement with experimental results. Geometry optimization and thermochemistry analysis of PBP dimers with and without water bridges using WB97Xd/6-31G(d,p) predict that both PBP dimerization and dimer stabilization by water bridges are spontaneous (ΔG(298) < 0). The (1)H NMR chemical shifts of PBP monomers and dimers predicted using the gauge-independent atomic orbital method and polarizable continuum model for solvation in chloroform are in an excellent agreement with the experimental results for dilute and concentrated PBP solutions in chloroform, respectively [X. Tan, H. Fenniri and M. R. Gray, Energy Fuels, 2009, 23, 3687]. The DFT calculations of PBP dimers with explicit water show that bridges containing 1-3 water molecules lead to stabilization of PBP dimers. Additional water molecules form hydrogen bonds with these bridges and de-shield the PBP protons, negating the effect of water on the (1)H(C3) NMR chemical shift of PBP, in agreement with experiment. The ΔG(298) results show that hydrogen bonding to water and water-promoted polynuclear assembly bridging is as important as π-π interactions for asphaltene aggregation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA