Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1468567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314881

RESUMEN

Many pathogenic bacteria form biofilms that are resistant to not only host immune defenses but also antibiotics, posing a need for the development of strategies to control biofilms. In this study, to prevent biofilm formation of the fulminating foodborne pathogen Vibrio vulnificus, chemical libraries were extensively screened to identify a small molecule inhibiting the activity of BrpR, a transcriptional regulator for biofilm genes. Accordingly, the BrpR inhibitor BFstatin [N1-(2-chloro-5-fluorophenyl)-N3-propylmalonamide], with a half-maximal effective concentration of 8.01 µM, was identified. BFstatin did not interfere with bacterial growth or exhibit cytotoxicity to the human epithelial cell line. BFstatin directly bound to BrpR and interrupted its binding to the target promoter DNAs of the downstream genes. Molecular dynamics simulation of the interaction between BFstatin and BrpR proposed that BFstatin modifies the structure of BrpR, especially the DNA-binding domain. Transcriptomic analyses revealed that BFstatin reduces the expression of the BrpR regulon including the cabABC operon and brp locus which contribute to the production of biofilm matrix of V. vulnificus. Accordingly, BFstatin diminished the biofilm levels of V. vulnificus by inhibiting the matrix development in a concentration-dependent manner. Altogether, BFstatin could be an anti-biofilm agent targeting BrpR, thereby rendering V. vulnificus more susceptible to host immune defenses and antibiotics.

2.
Arch Pharm Res ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325351

RESUMEN

Tau hyperphosphorylation and accumulation in neurofibrillary tangles are closely associated with cognitive deficits in Alzheimer's disease (AD). Glycogen synthase kinase 3ß (GSK3ß) overexpression has been implicated in tau hyperphosphorylation, and many GSK3ß inhibitors have been developed as potential therapeutic candidates for AD. However, the potent GSK3ß inhibitors produced are prone to side effects because they can interfere with the basic functions of GSK3ß. We previously found that when the phosphorylated PPPSPxS motifs in Wnt coreceptor LRP6 can directly inhibit GSK3ß, and thus, we produced a novel GSK3ß inhibitory peptide (GIP), specifically activated by Akt, by combining the PPPSPxS motif of LRP6 and the Akt targeted sequence (RxRxxS) of GSK3ß. GIP effectively blocked GSK3ß-induced tau phosphorylation in hippocampal homogenates and, when fused with a cell-permeable sequence, attenuated Aß-induced tau phosphorylation in human neuroblastoma cells and inhibited cell death. An in vivo study using a 3 × Tg-AD mouse model revealed that intravenous GIP significantly reduced tau phosphorylation in the hippocampus without affecting Aß plaque levels or neuroinflammation and ameliorated memory defects. The study provides a novel neuroprotective drug development strategy targeting tau hyperphosphorylation in AD.

3.
Proteins ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023292

RESUMEN

Butanol dehydrogenase (BDH) plays a crucial role in butanol biosynthesis by catalyzing the conversion of butanal to butanol using the coenzyme NAD(P)H. In this study, we observed that BDH from Thermotoga maritima (TmBDH) exhibits dual coenzyme specificity and catalytic activity with NADPH as the coenzyme under highly alkaline conditions. Additionally, a thermal stability analysis on TmBDH demonstrated its excellent activity retention even at elevated temperatures of 80°C. These findings demonstrate the superior thermal stability of TmBDH and suggest that it is a promising candidate for large-scale industrial butanol production. Furthermore, we discovered that TmBDH effectively catalyzes the conversion of aldehydes to alcohols and exhibits a wide range of substrate specificities toward aldehydes, while excluding alcohols. The dimeric state of TmBDH was observed using rapid online buffer exchange native mass spectrometry. Additionally, we analyzed the coenzyme-binding sites and inferred the possible locations of the substrate-binding sites. These results provide insights that improve our understanding of BDHs.

4.
Mol Cells ; 47(7): 100080, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871297

RESUMEN

The intricate assembly process of vimentin intermediate filaments (IFs), key components of the eukaryotic cytoskeleton, has yet to be elucidated. In this work, we investigated the transition from soluble tetrameric vimentin units to mature 11-nm tubular filaments, addressing a significant gap in the understanding of IF assembly. Through a combination of theoretical modeling and analysis of experimental data, we propose a novel assembly sequence, emphasizing the role of helical turns and gap filling by soluble tetramers. Our findings shed light on the unique structural dynamics of vimentin and suggest broader implications for the general principles of IF formation.


Asunto(s)
Filamentos Intermedios , Vimentina , Vimentina/metabolismo , Vimentina/química , Filamentos Intermedios/metabolismo , Humanos , Modelos Teóricos , Modelos Moleculares , Multimerización de Proteína
5.
Int J Biol Macromol ; 262(Pt 1): 129620, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262549

RESUMEN

In bacteria, NarJ plays an essential role as a redox enzyme maturation protein in the assembly of the nitrate reductase NarGHI by interacting with the N-terminal signal peptide of NarG to facilitate cofactor incorporation into NarG. The purpose of our research was to elucidate the exact mechanism of NarG signal peptide recognition by NarJ. We determined the structures of NarJ alone and in complex with the signal peptide of NarG via X-ray crystallography and verified the NarJ-NarG interaction through mutational, binding, and molecular dynamics simulation studies. NarJ adopts a curved α-helix bundle structure with a U-shaped hydrophobic groove on its concave side. This groove accommodates the signal peptide of NarG via a dual binding mode in which the left and right parts of the NarJ groove each interact with two consecutive hydrophobic residues from the N- and C-terminal regions of the NarG signal peptide, respectively, through shape and chemical complementarity. This binding is accompanied by unwinding of the helical structure of the NarG signal peptide and by stabilization of the NarG-binding loop of NarJ. We conclude that NarJ recognizes the NarG signal peptide through a complementary hydrophobic interaction mechanism that mediates a structural rearrangement.


Asunto(s)
Escherichia coli , Señales de Clasificación de Proteína , Nitrato-Reductasa/química , Nitrato-Reductasa/metabolismo , Escherichia coli/metabolismo , Oxidación-Reducción , Interacciones Hidrofóbicas e Hidrofílicas
6.
J Microbiol ; 61(12): 1033-1041, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38117463

RESUMEN

Escherichia coli RclA and Staphylococcus aureus MerA are part of the Group I flavoprotein disulfide reductase (FDR) family and have been implicated in the contribution to bacterial pathogenesis by defending against the host immune response. Fusobacterium nucleatum is a pathogenic, anaerobic Gram-negative bacterial species commonly found in the human oral cavity and gastrointestinal tract. In this study, we discovered that the F. nucleatum protein FN0820, belonging to the Group I FDR family, exhibited a higher activity of a Cu2+-dependent NADH oxidase than E. coli RclA. Moreover, FN0820 decreased the dissolved oxygen level in the solution with higher NADH oxidase activity. We found that L-tryptophan and its analog 5-hydroxytryptophan inhibit the FN0820 activities of NADH oxidase and the concomitant reduction of oxygen. Our results have implications for developing new treatment strategies against pathogens that defend the host immune response with Group I FDRs.


Asunto(s)
Escherichia coli , Fusobacterium nucleatum , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Bacterias/metabolismo , Boca , Flavoproteínas/química , Flavoproteínas/metabolismo
7.
Mol Cells ; 46(9): 538-544, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37528647

RESUMEN

The formation of uniform vitreous ice is a crucial step in the preparation of samples for cryogenic electron microscopy (cryo-EM). Despite the rapid technological progress in EM, controlling the thickness of vitreous ice on sample grids with reproducibility remains a major obstacle to obtaining high-quality data in cryo-EM imaging. The commonly employed classical blotting process faces the problem of excess water that cannot be absorbed by the filter paper, resulting in the formation of thick and heterogeneous ice. In this study, we propose a novel approach that combines the recently developed nanowire self-wicking technique with the classical blotting method to effectively control the thickness and homogeneity of vitrified ice. With simple procedures, we generated a copper oxide spike (COS) grid by inducing COSs on commercially available copper grids, which can effectively remove excess water during the blotting procedure without damaging the holey carbon membrane. The ice thickness could be controlled with good reproducibility compared to non-oxidized grids. Incorporated into other EM techniques, our new modification method is an effective option for obtaining high-quality data during cryo-EM imaging.


Asunto(s)
Cobre , Hielo , Microscopía por Crioelectrón/métodos , Reproducibilidad de los Resultados
8.
Sci Rep ; 13(1): 11108, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429971

RESUMEN

The foodborne bacterium Staphylococcus equorum strain KS1030 harbours plasmid pSELNU1, which encodes a lincomycin resistance gene. pSELNU1 undergoes horizontal transfer between bacterial strains, thus spreading antibiotic resistance. However, the genes required for horizontal plasmid transfer are not encoded in pSELNU1. Interestingly, a relaxase gene, a type of gene related to horizontal plasmid transfer, is encoded in another plasmid of S. equorum KS1030, pKS1030-3. The complete genome of pKS1030-3 is 13,583 bp long and encodes genes for plasmid replication, biofilm formation (the ica operon), and horizontal gene transfer. The replication system of pKS1030-3 possesses the replication protein-encoding gene repB, a double-stranded origin of replication, and two single-stranded origins of replication. The ica operon, relaxase gene, and a mobilization protein-encoding gene were detected in pKS1030-3 strain-specifically. When expressed in S. aureus RN4220, the ica operon and relaxase operon of pKS1030-3 conferred biofilm formation ability and horizontal gene transfer ability, respectively. The results of our analyses show that the horizontal transfer of pSELNU1 of S. equorum strain KS1030 depends on the relaxase encoded by pKS1030-3, which is therefore trans-acting. Genes encoded in pKS1030-3 contribute to important strain-specific properties of S. equorum KS1030. These results could contribute to preventing the horizontal transfer of antibiotic resistance genes in food.


Asunto(s)
Staphylococcus aureus , Staphylococcus , Staphylococcus/genética , Plásmidos/genética , Biopelículas
9.
Mol Cells ; 46(5): 309-318, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37170772

RESUMEN

The nucleoskeletal protein lamin is primarily responsible for the mechanical stability of the nucleus. The lamin assembly process requires the A11, A22, and ACN binding modes of the coiled-coil dimers. Although X-ray crystallography and chemical cross-linking analysis of lamin A/C have provided snapshots of A11 and ACN binding modes, the assembly mechanism of the entire filament remains to be explained. Here, we report a crystal structure of a coil 2 fragment, revealing the A22 interaction at the atomic resolution. The structure showed detailed structural features, indicating that two coiled-coil dimers of the coil 2 subdomain are separated and then re-organized into the antiparallel-four-helix bundle. Furthermore, our findings suggest that the ACN binding mode between coil 1a and the C-terminal part of coil 2 when the A11 tetramers are arranged by the A22 interactions. We propose a full assembly model of lamin A/C with the curvature around the linkers, reconciling the discrepancy between the in situ and in vitro observations. Our model accounts for the balanced elasticity and stiffness of the nuclear envelopes, which is essential in protecting the cellular nucleus from external pressure.


Asunto(s)
Filamentos Intermedios , Lamina Tipo A , Lamina Tipo A/metabolismo , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Núcleo Celular/metabolismo , Dominios Proteicos , Cristalografía por Rayos X
10.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675166

RESUMEN

Fusobacterium nucleatum is a lesion-associated obligate anaerobic pathogen of destructive periodontal disease; it is also implicated in the progression and severity of colorectal cancer. Four genes (FN0625, FN1055, FN1220, and FN1419) of F. nucleatum are involved in producing hydrogen sulfide (H2S), which plays an essential role against oxidative stress. The molecular functions of Fn1419 are known, but their mechanisms remain unclear. We determined the crystal structure of Fn1419 at 2.5 Å, showing the unique conformation of the PLP-binding site when compared with L-methionine γ-lyase (MGL) proteins. Inhibitor screening for Fn1419 with L-cysteine showed that two natural compounds, gallic acid and dihydromyricetin, selectively inhibit the H2S production of Fn1419. The chemicals of gallic acid, dihydromyricetin, and its analogs containing trihydroxybenzene, were potentially responsible for the enzyme-inhibiting activity on Fn1419. Molecular docking and mutational analyses suggested that Gly112, Pro159, Val337, and Arg373 are involved in gallic acid binding and positioned close to the substrate and pyridoxal-5'-phosphate-binding site. Gallic acid has little effect on the other H2S-producing enzymes (Fn1220 and Fn1055). Overall, we proposed a molecular mechanism underlying the action of Fn1419 from F. nucleatum and found a new lead compound for inhibitor development.


Asunto(s)
Fusobacterium nucleatum , Sulfuro de Hidrógeno , Fusobacterium nucleatum/metabolismo , Simulación del Acoplamiento Molecular , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo
11.
J Microbiol Biotechnol ; 33(1): 28-34, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36457189

RESUMEN

Endoribonuclease YbeY is specific to the single-stranded RNA of ribosomal RNAs and small RNAs. This enzyme is essential for the maturation and quality control of ribosomal RNA in a wide range of bacteria and for virulence in some pathogenic bacteria. In this study, we determined the crystal structure of YbeY from Staphylococcus aureus at a resolution of 1.9 Å in the presence of zinc chloride. The structure showed a zinc ion at the active site and two molecules of tricarboxylic acid citrate, which were also derived from the crystallization conditions. Our structure showed the zinc ion-bound local environment at the molecular level for the first time. Molecular comparisons were performed between the carboxylic moieties of citrate and the phosphate moiety of the RNA backbone, and a model of YbeY in complex with a single strand of RNA was subsequently constructed. Our findings provide molecular insights into how the YbeY enzyme recognizes single-stranded RNA in bacteria.


Asunto(s)
Endorribonucleasas , Staphylococcus aureus , Endorribonucleasas/genética , Staphylococcus aureus/genética , Virulencia , ARN , Zinc
12.
Biochem Biophys Res Commun ; 637: 210-217, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36403485

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder caused by C-terminally truncated lamin A, termed as the pre-progerin product. Progerin is a C-terminally farnesylated protein derived from pre-progerin, which causes nuclear deformation at the inner-nuclear membrane. As an alternative or additional mechanism, a farnesylation-independent abnormal interaction between the C-terminus of progerin and Ig-like domain has been proposed. However, the molecular mechanism underlying the role of unfarnesylated C-terminus of pre-progerin in HGPS remains largely unknown. In this study, we determined the crystal structures of C-terminal peptide of progerin and Ig-like domain of lamin A/C. Results showed that the C-terminal cysteine residue of progerin forms a disulfide bond with the only cysteine residue of the Ig-like domain. This finding suggested that unfarnesylated progerin can form a disulfide bond with the Ig-like domain in the lamin meshwork. The Alphafold2-assisted docking structure showed that disulfide bond formation was promoted by a weak interaction between the groove of Ig-like domain and the unfarnesylated C-terminal tail region of progerin. Our results provide molecular insights into the normal aging process as well as premature aging of humans.


Asunto(s)
Envejecimiento Prematuro , Lamina Tipo A , Progeria , Humanos , Envejecimiento Prematuro/genética , Cisteína , Disulfuros , Dominios de Inmunoglobulinas , Lamina Tipo A/química , Progeria/genética
13.
J Biol Chem ; 298(11): 102562, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198361

RESUMEN

Macrophages produce itaconic acid in phagosomes in response to bacterial cell wall component lipopolysaccharide to eliminate invading pathogenic bacteria. Itaconic acid competitively inhibits the first enzyme of the bacterial glyoxylate cycle. To overcome itaconic acid stress, bacteria employ the bacterial LysR-type transcriptional regulator RipR. However, it remains unknown which molecule activates RipR in bacterial pathogenesis. In this study, we determined the crystal structure of the regulatory domain of RipR from the intracellular pathogen Salmonella. The RipR regulatory domain structure exhibited the typical dimeric arrangement with the putative ligand-binding site between the two subdomains. Our isothermal titration calorimetry experiments identified isocitrate as the physiological ligand of RipR, whose intracellular level is increased in response to itaconic acid stress. We further found that 3-phenylpropionic acid significantly decreased the resistance of the bacteria to an itaconic acid challenge. Consistently, the complex structure revealed that the compound is antagonistically bound to the RipR ligand-binding site. This study provides the molecular basis of bacterial survival in itaconic acid stress from our immune systems. Further studies are required to reveal biochemical activity, which would elucidate how Salmonella survives in macrophage phagosomes by defending against itaconic acid inhibition of bacterial metabolism.


Asunto(s)
Proteínas Bacterianas , Salmonella , Isocitratos/metabolismo , Ligandos , Salmonella/genética , Salmonella/metabolismo , Proteínas Bacterianas/metabolismo
14.
Commun Biol ; 5(1): 1085, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224351

RESUMEN

Eukaryotic Cu, Zn-superoxide dismutase (SOD1) is primarily responsible for cytotoxic filament formation in amyotrophic lateral sclerosis (ALS) neurons. Two cysteine residues in SOD1 form an intramolecular disulfide bond. This study aims to explore the molecular mechanism of SOD1 filament formation by cysteine overoxidation in sporadic ALS (sALS). In this study, we determined the crystal structure of the double mutant (C57D/C146D) SOD1 that mimics the overoxidation of the disulfide-forming cysteine residues. The structure revealed the open and relaxed conformation of loop IV containing the mutated Asp57. The double mutant SOD1 produced more contagious filaments than wild-type protein, promoting filament formation of the wild-type SOD1 proteins. Importantly, we further found that HOCl treatment to the wild-type SOD1 proteins facilitated their filament formation. We propose a feasible mechanism for SOD1 filament formation in ALS from the wild-type SOD1, suggesting that overoxidized SOD1 is a triggering factor of sALS. Our findings extend our understanding of other neurodegenerative disorders associated with ROS stresses at the molecular level.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Cisteína , Disulfuros/química , Humanos , Mutación , Especies Reactivas de Oxígeno , Superóxido Dismutasa/química , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/química , Zinc/metabolismo
15.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36142491

RESUMEN

Neurodegenerative diseases such as Parkinson's disease (PD) are known to be related to oxidative stress and neuroinflammation, and thus, modulating neuroinflammation offers a possible means of treating PD-associated pathologies. Morin (2',3,4',5,7-pentahydroxy flavone) is a flavonol with anti-oxidative and anti-inflammatory effects found in wines, herbs, and fruits. The present study was undertaken to determine whether a morin-containing diet has protective effects in an MPTP-induced mouse model of PD. Mice were fed a control or morin diet for 34 days, and then MPTP (30 mg/kg, i.p.) was administered daily for 5 days to induce a PD-like pathology. We found that dietary morin prevented MPTP-induced motor dysfunction and ameliorated dopaminergic neuronal damage in striatum (STR) and substantia nigra (SN) in our mouse model. Furthermore, MPTP-induced neuroinflammation was significantly reduced in mice fed morin. In vitro studies showed that morin effectively suppressed glial activations in primary microglia and astrocytes, and biochemical analysis and a docking simulation indicated that the anti-inflammatory effects of morin were mediated by blocking the extracellular signal-regulated kinase (ERK)-p65 pathway. These findings suggest that morin effectively inhibits glial activations and has potential use as a functional food ingredient with therapeutic potential for the treatment of PD and other neurodegenerative diseases associated with neuroinflammation.


Asunto(s)
Flavonas , Ingredientes Alimentarios , Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonas/farmacología , Flavonoles/metabolismo , Flavonoles/farmacología , Flavonoles/uso terapéutico , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/patología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/etiología
16.
J Biol Chem ; 298(9): 102256, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35839855

RESUMEN

Nuclear lamins maintain the nuclear envelope structure by forming long linear filaments via two alternating molecular arrangements of coiled-coil dimers, known as A11 and A22 binding modes. The A11 binding mode is characterized by the antiparallel interactions between coil 1b domains, whereas the A22 binding mode is facilitated by interactions between the coil 2 domains of lamin. The junction between A11- and A22-interacting dimers in the lamin tetramer produces another parallel head-tail interaction between coil 1a and the C-terminal region of coil 2, called the ACN interaction. During mitosis, phosphorylation in the lamin N-terminal head region by the cyclin-dependent kinase (CDK) complex triggers depolymerization of lamin filaments, but the associated mechanisms remain unknown at the molecular level. In this study, we revealed using the purified proteins that phosphorylation by the CDK1 complex promotes disassembly of lamin filaments by directly abolishing the ACN interaction between coil 1a and the C-terminal portion of coil 2. We further observed that this interaction was disrupted as a result of alteration of the ionic interactions between coil 1a and coil 2. Combined with molecular modeling, we propose a mechanism for CDK1-dependent disassembly of the lamin filaments. Our results will help to elucidate the cell cycle-dependent regulation of nuclear morphology at the molecular level.


Asunto(s)
Proteína Quinasa CDC2 , Filamentos Intermedios , Lamina Tipo A , Proteína Quinasa CDC2/química , Humanos , Filamentos Intermedios/química , Lamina Tipo A/química , Polimerizacion , Dominios Proteicos
17.
J Microbiol ; 60(7): 746-755, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35781628

RESUMEN

Bacteriophages employ diverse mechanisms to facilitate the proliferation of bacteriophages. The Salmonella-infecting phage SPN3US contains a putative N-acetyltransferase, which is widely found in bacteriophages. However, due to low sequence similarity to the N-acetyltransferases from bacteria and eukaryotic cells, the structure and function of phage-encoded acetyltransferases are mainly unknown. This study determines the crystal structure of the putative N-acetyltransferase of SPN3US in complex with acetyl-CoA. The crystal structure showed a novel homodimeric arrangement stabilized by exchanging the C-terminal α-helix within the dimer. The following biochemical analyses suggested that the phage-encoded acetyltransferase might have a very narrow substrate specificity. Further studies are required to reveal the biochemical activity, which would help elucidate the interaction between the phage and host bacteria in controlling pathogenic bacteria.


Asunto(s)
Bacteriófagos , Fagos de Salmonella , Acetilcoenzima A , Acetiltransferasas/química , Acetiltransferasas/genética , Bacterias/genética , Polímeros
18.
Molecules ; 27(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897955

RESUMEN

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6, but it is highly reactive and poisonous in its free form. YggS is a PLP-binding protein found in bacteria and humans that mediates PLP homeostasis by delivering PLP to target enzymes or by performing a protective function. Several biochemical and structural studies of YggS have been reported, but the mechanism by which YggS recognizes PLP has not been fully elucidated. Here, we report a functional and structural analysis of YggS from Fusobacterium nucleatum (FnYggS). The PLP molecule could bind to native FnYggS, but no PLP binding was observed for selenomethionine (SeMet)-derivatized FnYggS. The crystal structure of FnYggS showed a type III TIM barrel fold, exhibiting structural homology with several other PLP-dependent enzymes. Although FnYggS exhibited low (<35%) amino acid sequence similarity with previously studied YggS proteins, its overall structure and PLP-binding site were highly conserved. In the PLP-binding site of FnYggS, the sulfate ion was coordinated by the conserved residues Ser201, Gly218, and Thr219, which were positioned to provide the binding moiety for the phosphate group of PLP. The mutagenesis study showed that the conserved Ser201 residue in FnYggS was the key residue for PLP binding. These results will expand the knowledge of the molecular properties and function of the YggS family.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fusobacterium nucleatum , Fosfato de Piridoxal , Proteínas Bacterianas/química , Sitios de Unión , Homeostasis , Humanos , Fosfatos/metabolismo , Proteínas , Piridoxal , Fosfato de Piridoxal/metabolismo
19.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 613-622, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503209

RESUMEN

MalE is a maltose/maltodextrin-binding protein (MBP) that plays a critical role in most bacterial maltose/maltodextrin-transport systems. Previously reported wild-type MBPs are monomers comprising an N-terminal domain (NTD) and a C-terminal domain (CTD), and maltose-like molecules are recognized between the NTD and CTD and transported to the cell system. Because MBP does not undergo artificial dimerization, it is widely used as a tag for protein expression and purification. Here, the crystal structure of a domain-swapped dimeric MalE from Salmonella enterica (named SeMalE) in complex with maltopentaose is reported for the first time, and its structure is distinct from typical monomeric MalE family members. In the domain-swapped dimer, SeMalE comprises two subdomains: the NTD and CTD. The NTD and CTD of one molecule of SeMalE interact with the CTD and NTD of the partner molecule, respectively. The domain-swapped dimeric conformation was stabilized by interactions between the NTDs, CTDs and linkers from two SeMalE molecules. Additionally, a maltopentaose molecule was found to be located at the interface between the NTD and CTD of different SeMalE molecules. These results provide new insights that will improve the understanding of maltodextrin-binding MalE proteins.


Asunto(s)
Proteínas Portadoras , Salmonella enterica , Maltosa , Proteínas de Unión a Maltosa , Polisacáridos
20.
Commun Biol ; 5(1): 267, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338226

RESUMEN

Lamins are intermediate filaments that form a 3-D meshwork in the periphery of the nuclear envelope. The recent crystal structure of a long fragment of human lamin A/C visualized the tetrameric assembly unit of the central rod domain as a polymerization intermediate. A genetic mutation of S143F caused a phenotype characterized by both progeria and muscular dystrophy. In this study, we determined the crystal structure of the lamin A/C fragment harboring the S143F mutation. The obtained structure revealed the X-shaped interaction between the tetrameric units in the crystals, potentiated by the hydrophobic interactions of the mutated Phe143 residues. Subsequent studies indicated that the X-shaped interaction between the filaments plays a crucial role in disrupting the normal lamin meshwork. Our findings suggest the assembly mechanism of the 3-D meshwork and further provide a molecular framework for understanding the aging process by nuclear deformation.


Asunto(s)
Lamina Tipo A , Progeria , Núcleo Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lamina Tipo A/genética , Membrana Nuclear , Progeria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA