RESUMEN
East Asian populations exhibit a genetic predisposition to obesity, yet comprehensive research on these traits is limited. We conducted a genome-wide association study (GWAS) with 93,673 Korean subjects to uncover novel genetic loci linked to obesity, examining metrics such as body mass index, waist circumference, body fat ratio, and abdominal fat ratio. Participants were categorized into non-obese, metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO) groups. Using advanced computational methods, we developed a multifaceted polygenic risk scores (PRS) model to predict obesity. Our GWAS identified significant genetic effects with distinct sizes and directions within the MHO and MUO groups compared with the non-obese group. Gene-based and gene-set analyses, along with cluster analysis, revealed heterogeneous patterns of significant genes on chromosomes 3 (MUO group) and 11 (MHO group). In analyses targeting genetic predisposition differences based on metabolic health, odds ratios of high PRS compared with medium PRS showed significant differences between non-obese and MUO, and non-obese and MHO. Similar patterns were seen for low PRS compared with medium PRS. These findings were supported by the estimated genetic correlation (0.89 from bivariate GREML). Regional analyses highlighted significant local genetic correlations on chromosome 11, while single variant approaches suggested widespread pleiotropic effects, especially on chromosome 11. In conclusion, our study identifies specific genetic loci and risks associated with obesity in the Korean population, emphasizing the heterogeneous genetic factors contributing to MHO and MUO.
Asunto(s)
Puntuación de Riesgo Genético , Obesidad , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Masa Corporal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Obesidad/genética , Polimorfismo de Nucleótido Simple , República de Corea/epidemiología , Pueblos del Este de Asia/genéticaRESUMEN
Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.
Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra la Malaria , Animales , Vacunas contra la Malaria/inmunología , Adyuvantes Inmunológicos/farmacología , Macaca mulatta , Adyuvantes de Vacunas , Anticuerpos Antiprotozoarios/inmunología , Citocinas/metabolismoRESUMEN
Despite numerous studies on the effect of each dialysis modality on mortality, the issue remains controversial. We investigated the hazard rate of mortality in patients with incident end-stage renal disease (ESRD) concerning initial dialysis modality (hemodialysis vs. peritoneal dialysis). Using a nationwide, multicenter, prospective cohort in South Korea, we studied 2207 patients, of which 1647 (74.6%) underwent hemodialysis. We employed the weighted Fine and Gray model over the follow-up period using inverse probability of treatment and censoring weighting. Landmark analysis was used for identifying the changing effect of dialysis modality on individuals who remained event-free at each landmark point. No significant difference in hazard rate was observed overall. However, the peritoneal dialysis group had a significantly higher hazard rate than the hemodialysis group among patients under 65 years after 4- and 5- year follow-up. A similar pattern was observed among those with diabetes mellitus. Landmark analysis also showed the higher hazard rate for peritoneal dialysis at 2 years for the education-others group and at 3 years for the married group. These findings may inform dialysis modality decisions, suggesting a preference for hemodialysis in young patients with diabetes, especially for follow-ups longer than 3 years.
Asunto(s)
Fallo Renal Crónico , Diálisis Peritoneal , Diálisis Renal , Humanos , Masculino , Femenino , Fallo Renal Crónico/terapia , Fallo Renal Crónico/mortalidad , Diálisis Renal/mortalidad , Diálisis Renal/métodos , Persona de Mediana Edad , Estudios Prospectivos , Diálisis Peritoneal/mortalidad , Diálisis Peritoneal/métodos , República de Corea/epidemiología , Anciano , AdultoRESUMEN
We present an in-depth single-cell atlas of in vitro multiculture systems on human primary airway epithelium derived from normal and diseased lungs of 27 individual donors. Our large-scale single-cell profiling identified new cell states and differentiation trajectories of rare airway epithelial cell types in human distal lungs. By integrating single-cell datasets of human lung tissues, we discovered immune-primed subsets enriched in lungs and organoids derived from patients with chronic respiratory disease. To demonstrate the full potential of our platform, we further illustrate transcriptomic responses to various respiratory virus infections in vitro airway models. Our work constitutes a single-cell roadmap for the cellular and molecular characteristics of human primary lung cells in vitro and their relevance to human tissues in vivo.
Asunto(s)
Células Epiteliales , Pulmón , Humanos , Células Epiteliales/metabolismo , Epitelio , Diferenciación Celular/fisiología , OrganoidesRESUMEN
[This corrects the article DOI: 10.3389/fmicb.2021.712260.].
RESUMEN
[This corrects the article DOI: 10.3389/fcimb.2022.909218.].
RESUMEN
[This corrects the article DOI: 10.3389/fimmu.2023.1101808.].
RESUMEN
During vertebrate embryonic development, neural crest-derived ectomesenchyme within the maxillary prominences undergoes precisely coordinated proliferation and differentiation to give rise to diverse craniofacial structures, such as tooth and palate. However, the transcriptional regulatory networks underpinning such an intricate process have not been fully elucidated. Here, we perform single-cell RNA-Seq to comprehensively characterize the transcriptional dynamics during mouse maxillary development from embryonic day (E) 10.5-E14.5. Our single-cell transcriptome atlas of â¼28,000 cells uncovers mesenchymal cell populations representing distinct differentiating states and reveals their developmental trajectory, suggesting that the segregation of dental from the palatal mesenchyme occurs at E11.5. Moreover, we identify a series of key transcription factors (TFs) associated with mesenchymal fate transitions and deduce the gene regulatory networks directed by these TFs. Collectively, our study provides important resources and insights for achieving a systems-level understanding of craniofacial morphogenesis and abnormality.
Asunto(s)
Redes Reguladoras de Genes , Análisis de Expresión Génica de una Sola Célula , Femenino , Embarazo , Ratones , Animales , Redes Reguladoras de Genes/genética , Diferenciación Celular/genética , Factores de Transcripción/genética , Hueso Paladar , Regulación del Desarrollo de la Expresión GénicaRESUMEN
Introduction: Despite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. Methods: Here, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. Results: Differential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. Discussion: Aberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Cinética , Síndrome Post Agudo de COVID-19 , Inflamación , Mediadores de Inflamación , Interferón-alfaRESUMEN
Scrub typhus is a mite-borne disease caused by the obligately intracellular bacterium Orientia tsutsugamushi. We previously demonstrated that ScaA, an autotransporter membrane protein of O. tsutsugamushi, is commonly shared in various genotypes and involved in adherence to host cells. Here, we identified a mixed-lineage leukemia 5 (MLL5) mammalian trithorax group protein as a host receptor that interacts with ScaA. MLL5, identified by yeast two-hybrid screening, is an alternative splicing variant of MLL5 (vMLL5) which contains 13 exons with additional intron sequences encoding a tentative transmembrane domain. Indeed, vMLL5 is expressed on the plasma membrane as well as in intracellular compartments in eukaryotic cells and colocalized with adherent O. tsutsugamushi. In addition, ScaA-expressing Escherichia coli showed significantly increased adherence to vMLL5-overexpressing cells compared with vector control cells. We mapped the C-terminal region of the passenger domain of ScaA as a ligand for vMLL5 and determined that the Su(var)3-9, Enhancer of zeste, Trithorax (SET) domain of MLL5 is an essential and sufficient motif for ScaA binding. We observed significant and specific inhibition of bacterial adhesion to host cells in competitive inhibition assays using the C-terminal fragment of ScaA or the SET domain of vMLL5. Moreover, immunization with the C-terminal fragment of ScaA provided neutralizing activity and protective immunity against lethal challenge with O. tsutsugamushi as efficiently as vaccination with the whole passenger domain of ScaA. These results indicate that vMLL5 is a novel cellular receptor for ScaA-mediated adhesion of O. tsutsugamushi and facilitates bacterial adhesion to host cells, thereby enhancing bacterial infection. IMPORTANCE O. tsutsugamushi is a mite-borne pathogen that causes scrub typhus. As an obligately intracellular pathogen, its adhesion to and invasion of host cells are critical steps for bacterial growth. However, the molecular basis of the bacterial ligand and host receptor interaction is poorly defined. Here, we identified a splicing variant of MLL5 (vMLL5) as a cellular adhesion receptor of ScaA, an outer membrane autotransporter protein of O. tsutsugamushi. We mapped the interacting domains in the bacterial ligand and host receptor and confirmed their functional interaction. In addition, immunization with the C-terminal region of ScaA, which involves an interaction with the SET domain of vMLL5, not only induces enhanced neutralizing antibodies but also provides protective immunity against lethal challenge with O. tsutsugamushi.
Asunto(s)
Orientia tsutsugamushi , Tifus por Ácaros , Animales , Humanos , Empalme Alternativo , Ligandos , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Orientia tsutsugamushi/genética , Orientia tsutsugamushi/metabolismo , Tifus por Ácaros/microbiología , Tifus por Ácaros/prevención & control , Sistemas de Secreción Tipo V/metabolismo , Proteínas Bacterianas/metabolismoRESUMEN
Background: Despite the use of vaccines and therapeutics against the coronavirus disease 2019 (COVID-19) pandemic, this severe disease has been a critical burden on public health, whereas the pathogenic mechanism remains elusive. Recently, accumulating evidence underscores the potential role of the aberrant B-cell response and humoral immunity in disease progression, especially in high-risk groups. Methods: Using single-cell RNA (scRNA) sequencing analysis, we investigated transcriptional features of B-cell population in peripheral blood from COVID-19 patients and compared them, according to clinical severity and disease course, against a public B-cell dataset. Results: We confirmed that acute B cells differentiate into plasma cells, particularly in severe patients, potentially through enhanced extrafollicular (EF) differentiation. In severe groups, the elevated plasma B-cell response displayed increased B-cell receptor (BCR) diversity, as well as higher levels of anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) spike antibodies in plasma, than those in moderate cases, suggesting more robust and heterogeneous plasma cell response in severe COVID-19 patients. Trajectory analysis identified a differentiation pathway for the EF B-cell response from active naïve to atypical memory B cells (AM2), in addition to the emergence of an aberrant plasma cell subset (PC2), which was associated with COVID-19 progression and severity. The AM2 and PC2 subsets surged in the acute phase of the severe disease and presented multiple inflammatory features, including higher cytokine expression and humoral effector function, respectively. These features differ from other B-cell subsets, suggesting a pathogenic potential for disease progression. Conclusion: The acute surge of AM2 and PC2 subsets with lower somatic hypermutation and higher inflammatory features may be driven by the EF B-cell response during the acute phase of severe COVID-19 and may represent one of the critical drivers in disease severity.
Asunto(s)
Subgrupos de Linfocitos B , COVID-19 , Anticuerpos Antivirales , Progresión de la Enfermedad , Humanos , PandemiasRESUMEN
Craniofacial morphogenesis is a complex process that requires precise regulation of cell proliferation, migration, and differentiation. Perturbations of this process cause a series of craniofacial deformities. Dlx2 is a critical transcription factor that regulates the development of the first branchial arch. However, the transcriptional regulatory functions of Dlx2 during craniofacial development have been poorly understood due to the lack of animal models in which the Dlx2 level can be precisely modulated. In this study, we constructed a Rosa26 site-directed Dlx2 gene knock-in mouse model Rosa26 CAG-LSL-Dlx2-3xFlag for conditionally overexpressing Dlx2. By breeding with wnt1 cre mice, we obtained wnt1 cre ; Rosa26 Dlx2/- mice, in which Dlx2 is overexpressed in neural crest lineage at approximately three times the endogenous level. The wnt1 cre ; Rosa26 Dlx2/- mice exhibited consistent phenotypes that include cleft palate across generations and individual animals. Using this model, we demonstrated that Dlx2 caused cleft palate by affecting maxillary growth and uplift in the early-stage development of maxillary prominences. By performing bulk RNA-sequencing, we demonstrated that Dlx2 overexpression induced significant changes in many genes associated with critical developmental pathways. In summary, our novel mouse model provides a reliable and consistent system for investigating Dlx2 functions during development and for elucidating the gene regulatory networks underlying craniofacial development.
RESUMEN
Craniofacial development involves the regulation of a compendium of transcription factors, signaling molecules, and epigenetic regulators. Histone deacetylases (HDACs) are involved in the regulation of cell proliferation, differentiation, and homeostasis across a wide range of tissues, including the brain and the cardiovascular, muscular, and skeletal systems. However, the functional role of Hdac4 during craniofacial development remains unclear. In this study, we investigated the effects of knocking out Hdac4 on craniofacial skeletal development by conditionally disrupting the Hdac4 gene in cranial neural crest cells (CNCCs) using Cre-mediated recombination. Mice deficient for Hdac4 in CNCC-derived osteoblasts demonstrated a dramatic decrease in frontal bone formation. In vitro, pre-osteoblasts (MC3T3-E1 cells) lacking Hdac4 exhibited reduced proliferative activity in association with the dysregulation of cell cycle-related genes. These findings suggested that Hdac4 acts, at least in part, as a regulator of craniofacial skeletal development by positively regulating the proliferation of CNCC-derived osteoblasts.
RESUMEN
BACKGROUND/AIMS: Coronavirus disease 2019 (COVID-19) is associated with acute respiratory syndrome. The mechanisms underlying the different degrees of pneumonia severity in patients with COVID-19 remain elusive. This study provides evidence that COVID-19 is associated with eosinophil-mediated inflammation. METHODS: We performed a retrospective case series of three patients with laboratory and radiologically confirmed COVID-19 pneumonia admitted to Chosun University Hospital. Demographic and clinical data on inflammatory cell lung infiltration and cytokine levels in patients with COVID-19 were collected. RESULTS: Cytological analysis of sputum, tracheal aspirates, and bronchoalveolar lavage fluid (BALF) samples from all three patients revealed massive infiltration of polymorphonuclear cells (PMNs), such as eosinophils and neutrophils. All sputum and BALF specimens contained high levels of eosinophil cationic proteins. The infiltration of PMNs into the lungs, together with elevated levels of natural killer T (NKT) cells in BALF and peripheral blood samples from patients with severe pneumonia in the acute phase was confirmed by flow cytometry. CONCLUSION: These results suggest that the lungs of COVID-19 patients can exhibit eosinophil-mediated inflammation, together with an elevated NKT cell response, which is associated with COVID-19 pneumonia.
Asunto(s)
COVID-19 , Células T Asesinas Naturales , Eosinofilia Pulmonar , Líquido del Lavado Bronquioalveolar , Eosinófilos , Humanos , Eosinofilia Pulmonar/diagnóstico , Estudios Retrospectivos , SARS-CoV-2RESUMEN
Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.
Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Proteínas del Sistema Complemento/inmunología , Eosinófilos/inmunología , Inflamación/inmunología , Neumonía Viral/inmunología , SARS-CoV-2/inmunología , Inmunidad Adaptativa , Adulto , Anciano , Anciano de 80 o más Años , Complejo Antígeno-Anticuerpo/metabolismo , COVID-19/metabolismo , COVID-19/virología , Activación de Complemento , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Eosinófilos/virología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/virología , Lesión Pulmonar/inmunología , Lesión Pulmonar/patología , Lesión Pulmonar/virología , Masculino , Persona de Mediana Edad , Neumonía Viral/metabolismo , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal , Células Th2/inmunología , Carga Viral , Adulto JovenRESUMEN
Despite a clear association of patient's age with COVID-19 severity, there has been conflicting data on the association of viral load with disease severity. Here, we investigated the association of viral load dynamics with patient's age and severity of COVID-19 using a set of respiratory specimens longitudinally collected (mean: 4.8 times/patient) from 64 patients with broad distribution of clinical severity and age during acute phase. Higher viral burden was positively associated with inflammatory responses, as assessed by IL-6, C-reactive protein, and lactate dehydrogenase levels in patients' plasma collected on the same day, primarily in the younger cohort (≤59 years old) and in mild cases of all ages, whereas these were barely detectable in elderly patients (≥60 years old) with critical disease. In addition, viral load dynamics in elderly patients were not significantly different between mild and critical cases, even though more enhanced inflammation was consistently observed in the elderly group when compared to the younger group during the acute phase of infection. The positive correlation of viral load with disease severity in younger patients may explain the increased therapeutic responsiveness to current antiviral drugs and neutralizing antibody therapies in younger patients compared to elderly patients. More careful intervention against aging-associated inflammation might be required to mitigate severe disease progression and reduce fatality in COVID-19 patients more than 60 years old.
RESUMEN
Autotransporter proteins are widely present in Gram-negative bacteria. They play a pivotal role in processes related to bacterial pathogenesis, including adhesion, invasion, colonization, biofilm formation, and cellular toxicity. Bioinformatics analysis revealed that Orientia tsutsugamushi, the causative agent of scrub typhus, encodes six different autotransporter genes (scaA-scaF). Although four of these genes (scaA, scaC, scaD, and scaE) are present in diverse strains, scaB and scaF have been detected in only a limited number of strains. Previous studies have demonstrated that ScaA and ScaC are involved in the adherence of host cells. However, the putative function of other O. tsutsugamushi Sca proteins has not been studied yet. In this study, we show that scaB is transcribed and expressed on the surface of O. tsutsugamushi Boryong strain. Using a heterologous Escherichia coli expression system, we demonstrated that ScaB-expressing E. coli can successfully mediate adherence to and invasion into non-phagocytic cells, including epithelial and endothelial cells. In addition, pretreatment with a recombinant ScaB polypeptide inhibits the entry of O. tsutsugamushi into cultured mammalian cells. Finally, we also identified the scaB gene in the Kuroki and TA686 strains and observed high levels of sequence variation in the passenger domains. Here, we propose that the ScaB protein of O. tsutsugamushi can mediate both adhesion to and invasion into host cells in the absence of other O. tsutsugamushi genes and may play important roles in bacterial pathogenesis.
RESUMEN
Serologic and molecular surveillance of serum collected from 152 suspected scrub typhus patients in Myanmar revealed Orientia tsutsugamushi of genotypic heterogeneity. In addition, potential co-infection with severe fever with thrombocytopenia syndrome virus was observed in 5 (3.3%) patients. Both scrub typhus and severe fever with thrombocytopenia syndrome are endemic in Myanmar.
Asunto(s)
Coinfección , Orientia tsutsugamushi , Tifus por Ácaros , Trombocitopenia , Coinfección/epidemiología , Humanos , Mianmar/epidemiología , Orientia , Orientia tsutsugamushi/genética , Tifus por Ácaros/complicaciones , Tifus por Ácaros/diagnóstico , Tifus por Ácaros/epidemiologíaRESUMEN
PURPOSE: To assess postsurgical stability of mandibular advancement combined with orthodontic treatment, following functional splint therapy, in patients with idiopathic condylar resorption (ICR). PATIENTS AND METHODS: Sixteen patients who were treated with functional splint therapy followed by orthognathic surgery combined with orthodontic treatment between 2010 and 2017 were included in this retrospective study. The primary outcome variable was skeletal stability, measured on the y-axis to point B (y-axis-B). Cephalometric analysis, including measurement of temporomandibular joint spaces, was carried out on serial magnetic resonance images (MRI) prior to orthognathic surgery (T0), immediately after surgery (T1), and after at least 1 year of follow-up (T2). The differences in the data between time points were compared using statistical analyses. RESULTS: All patients obtained an esthetic facial profile after orthognathic surgery, with normal occlusion as well as normal protrusive and laterotrusive excursion after treatment. Mean advancement of the mandible immediately following surgery (y-axis-B, T1 - T0) was 7.28 ± 5.79 mm. This was the only skeletal measurement that showed a sagittal positional change of the mandible. Mean backward movement (T2 - T1) was -1.04 ± 2.35 mm (p2 = 0.116). Thirteen out of 16 patients experienced no postsurgical relapse or less than 2 mm of mandibular backward movement (81.25%), while two out of 16 patients showed more than 2 mm of mandibular backward movement (12.5%). CONCLUSIONS: Patients who underwent mandibular advancement combined with orthodontic treatment, following functional splint therapy, exhibited a stable mandibular position at the 1-year follow-up. This study indicated that functional splint therapy prior to orthognathic surgery for mandibular advancement may be a good adjuvant treatment for ICR patients.
Asunto(s)
Procedimientos Quirúrgicos Ortognáticos , Férulas (Fijadores) , Cefalometría , Estética Dental , Estudios de Seguimiento , Humanos , Mandíbula , Cóndilo Mandibular , Estudios RetrospectivosRESUMEN
BACKGROUND: 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan) is used as an antiseptic and is a potential endocrine-disrupting chemical that can affect thyroid hormone levels. This study evaluated the relationship between triclosan exposure and thyroid hormones. METHODS: Data from the second Korean National Environmental Health Survey (2012-2014) were analyzed. Triclosan exposure was evaluated using urinary triclosan concentrations and classified into 2 groups: 'below detection (< limit of detection [LOD])' vs. 'detected (≥ LOD).' Multiple linear regression analysis was conducted to determine the relationship between triclosan exposure and the serum thyroid hormone concentrations, adjusting for age, body mass index, urinary creatinine, and smoking status. RESULTS: When grouped by sex, triclosan exposure was positively associated with the serum thyroid-stimulating hormone (TSH) concentrations in females with marginal significance (ß = 0.066, p = 0.058). However, no significant association was identified between triclosan exposure and serum total triiodothyronine and thyroxine in both males and females, and TSH in males. CONCLUSIONS: This study is the first human study to evaluate the relationship between triclosan exposure and serum thyroid hormone concentrations in the Korean population. There was suggestive positive association between triclosan exposure and the serum TSH in females. Further studies need to evaluate the relationship between long-term exposure to low-dose triclosan and thyroid hormones.